Нейтраль в электрике что это?

Нейтраль в электрике что это?

Нейтраль в электрике что это?

Виды и режимы работы нулевого провода — что это такое

Для выравнивания напряжения по фазам электроустановок применяется нулевой провод. Он необходим для предотвращения воспламенений приборов и пожаров. Кабель является частью нейтрали – общей точки генераторной или трансформаторной обмотки, соединенной, как звезда. Существует два типа проводника – рабочий N и защитный PE.

  1. Что такое нулевой провод
  2. Принцип работы
  3. Режимы работы
  4. Чем опасно повреждение нулевого провода
  5. Реакция электроприборов на обрыв нуля
  6. Задачи и назначение нулевого провода
  7. Повторное заземление
  8. TN
  9. TN-С
  10. ТТ
  11. IT
  12. Что такое заземление и нейтральный провод
  13. Схема подключения нейтрального провода и заземления
  14. Правила подключения нейтрали

Что такое нулевой провод

Нулевые провода в электрощитке (синий цвет)

При работе с электричеством важно понять, что такое рабочий и защитный нулевой провод. В первом случае он выравнивает напряжение по фазе, во втором – защищает зануление. Пользователи ошибочно считают, что нейтральный проводник является исключительно заземлением. Его главная функция – соединение нейтралей установок в трехфазной цепи.

При подаче различной нагрузки на каждую из фаз происходит смещение нейтрали – симметрия напряжений нарушается. Одним потребителям подается повышенное напряжение, другие получают пониженное. При низком напряжении электроприборы функционируют со сбоями, при высоком – подвергаются перегрузке и загораются. Задача нуля – уравнять повышенные и пониженные показатели, обеспечив баланс электросети.

В ПУЭ установлена расцветка нулевого провода – голубая, которая соответствует европейским стандартам.

Принцип работы

В новостройках и домах старой застройки схема передачи энергии принципиально отличаются. Электросеть новостроек сконструирована по принципу TN-S:

  • электричество поступает от трансформаторов со вторичной обмоткой, соединенной по типу «звезда» (провода, сходящиеся в нулевой точке);
  • вторая часть концов кабелей отводится к клеммам А, В, С, также соединенных в нулевой точке, и подключается по заземляющему контуру к подстанции;
  • высоковольтный провод с нулевым сопротивлением разделяется на защитный РЕ (желто-зеленый) и рабочий N (голубой).

В общем распредщитке новостройки подводятся 3 фазы, защитный проводник и нейтральный провод.

Дома старой застройки не имеют защитной проводки. Там реализована устаревшая четырехпроводная система TN-C:

  • нулевой заземленный проводник находится в распределительной коробке;
  • фаза и ноль от трансформатора подкинута к зданию через подземные или надземные высоковольтные кабели;
  • провода соединяются в щитке ввода, образуя трехфазную систему с рабочим напряжением 220 или 380 В;
  • от щитка выполняется разводка проводки на квартиры и подъезды;
  • потребители получают электроэнергию от проводов одной из фаз через сеть с напряжением 220 В;
  • разница в нагрузке устраняется за счет подвода нулевого N-провода.

Схемы подключения старых домов к электросети являются устаревшими и небезопасными.

Режимы работы

Существуют следующие режимы нейтрали электрических сетей:

  • глухозаземленный (сети на 380 вольт– 110 киловольт) – потенциалы нейтрали и земли одинаковы;
  • изолированный (сети на 6, 10 и 35 киловольт) – между нейтралью и землей наблюдаются незначительные утечки тока;
  • часть электросети с небольшим импедансом сопротивления и сопротивлением земли.

Применяют нейтральный провод для предупреждения аварийных скачков напряжений по фазе, с целью релейной защиты от замыканий фазы на землю, а также для обеспечения надежности работы электроприборов.

Чем опасно повреждение нулевого провода

Перегрев нулевых проводов из-за плохого контакта

Ноль повреждается при механических воздействиях, коротких замыканиях, некачественном подключении или в результате старости проводки. Обрыв нейтрали:

  • PEN-проводник в кабеле питания – остается один заземляющий контур, который визуально не заметно;
  • сгорание проводника в распредщитке – фазные проводники перекашиваются, показатель напряжения увеличивается до 380 В;
  • обрыв в щитке квартиры – в розетках остается вторая фаза, бытовая техника от них не запитывается.

Повреждение нейтрали исключает равность потенциалов сетей с различной нагрузкой, в результате чего может сгореть бытовая техника. Изоляция в таких случаях пробивается. В старом жилом фонде со схемой подключения TN-C (нуль – защитный проводник) при поломках существуют риски поражения током. В новостройках повреждения нуля приводит к тому, что при касании к технике чувствуются легкие разряды тока.

Разряды тока от прикосновений к корпусу оборудования также свидетельствуют о его неисправности.

Реакция электроприборов на обрыв нуля

При обрыве нуля на фазу с большим количеством потребителей увеличивается нагрузка. Напряжение при этом снижается. На фазе с меньшим числом потребителей наблюдается резкое повышение напряжения. Электроприборы могут:

  • работать со сбоями;
  • ломаться или сгорать при подключении к сети;
  • биться током, если не выполнялось заземление.

Задачи и назначение нулевого провода

Вводные нули на квартиры

Монтажная роль жильного нейтрального провода – соединение зануленных элементов электрических установок с нейтралью глухого заземления. Фактически он уравнивает разницу потенциалов фаз, отводит токи от участков с замыканием проводки, предотвращает травматизм и равномерно распределяет нагрузку по всем квартирам.

Система подводки по типу «звезды» имеет векторные показатели, идентичные подстанции трансформатора. Соединение является надежным, но только при условии качества проводов и соблюдения правил их соединения.

Повторное заземление

Повторным заземлением нулевого проводника является защита, установленная на определенных правилами ПУЭ промежутках на всей протяженности нейтрали. В задачи повторного заземления включается снижение силы напряжения в нулевом проводе и электроприборах, которые были занулены относительно грунта. Это свойство целесообразно в качестве защиты от обрыва нулевого провода и при пробое электрического напряжения на корпус электрических приборов.

Чтобы сделать повторное подключение, необходимо провести непрерывную нейтраль от щитка до нулевых проводников. В условиях многоэтажек для повторного заземления применяют различные системы.

Трансформаторная нейтраль в электрике заземляется, а доступная часть присоединяются к ней через нулевые защитные проводники. В нормальном режиме электроприемник под напряжением не находится. Система TN бывает:

  • TN-S – защитный и нулевой проводник разделяются по протяженности всей магистрали;
  • TN-C-S – функции проводов РЕ и N совмещаются в одном части проводника, выведенного от трансформатора.

Если коммуникации подключаются в частном доме, используются естественные заземлители – металлические штыри в грунте. Нормативные документы не рекомендуют применять естественные проводники, поскольку невозможно рассчитать сопротивление, которое дает почва при растекании тока.

Заземление в домах, построенных до середины 90-х, для которой использовался четырехпроводной способ – 3 фазы и 1 нуль. Защитную и рабочую функции нейтрали выполняет общий проводник на протяжении всей магистрали. Запитка потребителей происходит от PEN-кабеля. Он же задействуется для заземления.

Применяется для подачи электроэнергии в загородных и сельских условиях. Ток поступает по линиям электропередач на опорах. Установки разрешены в случаях, когда TN сделать невозможно или очень дорого. При подаче повышенного тока на приборы цепь питания выключается полностью через УЗО.

Сеть с изолированной нейтралью трансформатора. Отводится от грунта или заземляется через приемник с большим сопротивлением. Линия земли проводится по отдельной шине, а на ней уже подключаются контакты розеток. Организация системы целесообразная для образовательных, медицинских учреждений.

Что такое заземление и нейтральный провод

Функция нейтрального проводника N – баланс потенциалов нескольких фаз и обеспечение потребителей током. Нулевой провод соединяется с глухозаземленной нейтралью трансформатора. В частных домах используется однофазный тип подключения с помощью нулевого и фазного кабеля. Для соединения нуля и земли используется заземляющий контур. Сама нейтраль маркируется изоляцией голубого цвета.

Проводник заземления обеспечивает безопасность электролинии при поломке. Его нормальный режим работы – проводной, при критических сбоях потенциал тока отводится в почву. Кабель РЕ маркируется при помощи сине-желтого цвета.

Нейтраль и защита в одном проводе обозначаются PEN, маркируются голубым цветом с желтыми и зелеными полосками на концах.

Схема подключения нейтрального провода и заземления

В МЭК-364, ГОСТе 30331.1-95 приводятся схемы подключения сети, нагрузка которой равняется 380 Вольт. По этой причине в квартире рекомендуется применять одну из систем.

Отдельная линия заземления TN-CS. Нейтральный щитки и защитные проводники домашнего коммутатора соединяются друг с другом. При наличии двух проводов PEN-кабель в определенной точке разделяется на нейтраль и защиту. Провода PE подкидываются к проводникам N. Защита схемы зависит от точки обрыва:

  • До места разделения. Фазный проводник и устройство зашиты отводят напряжение в нейтраль, а от нее – на провод защиты.
  • После места разделения. Опасное электричество не передается на корпус бытовой техники, а сразу передается на провод защиты.

В многоэтажках не всегда получается сделать подобную заземляющую линию.

Правила подключения нейтрали

Глава 1.7 ПУЭ подробно рассматривает электрическую безопасность при заземлении. В «Библии электрика» сказано:

  • для электрических установок напряжением более 1 кВ требуется глухозаземленная нейтраль, отводящая большие токи замыкания в грунт;
  • для оборудования до 1 В можно использовать изолированную или глухую нейтраль;
  • глухозаземленную нейтраль обязательно зануляют и присоединяют к линии заземления через трансформатор;
  • заземление и нейтраль выполняются при помощи медных (сечение 4 мм2), алюминиевых (сечение 6 мм2), изолированных (1,5 мм2 и 2,5 мм2) кабелей;
  • соединенные в одной скрутке кабели из меди должные иметь сечение 1 мм2, из алюминия – 2,5 мм2;
  • если от щитка квартиры или этажа протягивается 3 провода, используется защитная нейтраль;
  • если групповую сеть выполняют при помощи двух кабелей, нейтраль защиты протягивается от ближнего щита;
  • к нулю присоединяются все домашние приборы – чайник, кондиционер, компьютер, стиралка, кипятильник, холодильник.

При условии правильной схемы подключения защитный нулевой провод сможет предотвратить разрушение электросети и травмы в случаях короткого замыкания. Нейтраль равномерно распределяет нагрузку по всем линиям, этажам и квартирам многоэтажки. При ее первичном и повторном подключении стоит руководствоваться ПУЭ.

Чем «земля» отличается от «нуля»? Разбираемся в сложностях электрики

Если вы знакомы с электрикой, наверняка знаете понятия «нуль» и «земля». В чем разница, или это практически одно и то же? Ответ в нашей статье.

В Советском Союзе была принята двухпроводная сеть, где были лишь фазный и нулевой проводник, а заземление выполнялось на батарею или трубу водоснабжения. Сейчас стал популярен монтаж трехпроводной сети, в котором есть нулевой и заземляющий проводники. В щитовой они оба садятся на заземляющую шину. Если они объединены в щитовой, тогда чем они вообще отличаются? Отвечаем, опираясь на нормативные документы.

Что такое «нуль» и «земля» согласно ПУЭ?

То, что мы привыкли называть «нулем» и «землей» в ПУЭ называется нулевым рабочим проводником (N) и нулевым защитным проводником (PE). Вот как они трактуются в нормативном документе:

1.7.17. Защитным проводником (РЕ) в электроустановках называется проводник, применяемый для защиты от поражения людей и животных электрическим током. В электроустановках до 1 кВ защитный проводник, соединенный с глухозаземленной нейтралью генератора или трансформатора, называется нулевым защитным проводником.

1.7.18.а Нулевым рабочим проводником (N) в электроустановках до 1 кВ называется проводник, используемый для питания электроприемников, соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной точкой источника в трехпроводных сетях постоянного тока.

Из этих формулировок понятно, что защитный нулевой проводник необходим для защиты от поражения электрическим током. То есть к нему должно заземляться электрооборудование, например, стиральная машинка, бойлер, котел и т.д. В то же время рабочий нулевой проводник необходим для питания оборудования, то есть по нему будет протекать ток.

В некоторых случаях допускается использовать «нуль» (PE) в качестве «земли», как это указано в ПУЭ 1.7.18.б. В этом случае провод становится совмещенным проводником, который сочетает функции нулевого защитного и нулевого рабочего проводников. Он будет называться PEN. Однако здесь есть один нюанс, который важно знать.

Дело в том, что согласно ПУЭ 1.7.83 «В цепи заземляющих и нулевых защитных проводников не должно быть разъединяющих приспособлений и предохранителей». То есть нулевой защитный проводник («земля») должен идти непрерывно от щитка к розетке или осветительному прибору. Если мы, к примеру, посадим заземление на нуль, тогда «путь» прервется путем вынимания вилки из розетки. И если произойдет пробой, корпус остального оборудования, заземленного на этот провод, окажется под напряжением.

Далее в этом же пункте сказано: «В цепи нулевых рабочих проводников, если они одновременно служат для целей зануления, допускается применение выключателей, которые одновременно с отключением нулевых рабочих проводников отключают все провода, находящиеся под напряжением». Из этого следует, что «нуль» можно использовать в качестве «земли», если при его отключении, отключаются и все стальные проводники, находящиеся под напряжением. Осуществить такое в квартирных условиях довольно сложно.

Как должно осуществляться заземление в трехпроводной сети?

На данный момент в большинстве новостроек укладывают именно трехпроводную сеть, в которой идет фаза, нуль и заземление (желто-зеленый провод). «Нуль» и «земля» присоединяются в щитке к одной заземляющей шине, но не под общий контактный зажим (ПУЭ 7.1.36). Затем заземление одним непрерывным проводом подводится к каждой розетке. У большинства современного электрооборудования уже есть третий заземляющий контакт на вилке, который обеспечивает заземление корпуса прибора при включении его в розетку.

Вывод

Главная отличительная особенность «нуля» и «земли» в их назначении. «Нуль» совместно с фазой предназначен для питания электроприборов, а «земля» для защиты людей и животных от поражения электрическим током, если случится пробой. Рабочий «нуль» можно использовать в качестве «земли», если не нарушаются условия ПУЭ 1.7.83. Мы же рекомендуем класть проводку сразу с заземляющим проводником, что исключает необходимость использовать «ноль» не по назначению.

Проверьте свои знания в электрике:

Нейтраль — это. Определение, устройство и назначение

Электроэнергетика – это сложный промышленный комплекс, который состоит из множества составных частей. Чтобы каждый элемент работал правильно и выполнял поставленные задачи, необходимо точное знание и понимание физических процессов, которые протекают в силовом оборудовании. Некоторые из них легко объяснить, поэтому предлагаем познакомиться с таким понятием, как «нейтраль».

Общее назначение нулевого провода в обмотках трансформатора

Нейтраль – это общая, нулевая точка соединение проводника в трехфазных трансформаторах или генераторах. На текущий момент существует 4 основных разновидности присоединения нулевой точки:

  1. Изолированная. Этот тип характеризуется отсутствием нейтрали. Основной схемой соединения для представленной сети является треугольник. При однофазных замыканиях на землю на рабочих фазах не чувствуют изменений в энергопотреблении. Подобная разновидность применяется в распределительных сетях 6-35 кВ.
  2. Резонансно-заземленная. Указанный вариант предполагает использование заземления нулевой точки обмоток трансформатора или генератора через дугогасящие катушки или реакторы (ДГК, ДГР). Наличие специализированного оборудования компенсирует повышающийся уровень тока, позволяя избежать более сложных, межфазных повреждений.
  3. Глухозаземленная. Самый распространенный тип нейтрали, который используется в сетях бытового потребления. Обмотка трансформаторов по низкой стороне выполняется соединением разомкнутая звезда, а нулевая точка заземляется через контур заземления трансформатора или трансформаторной подстанции. При повреждениях на линии или возникновении однофазного замыкания создается потенциал относительно земли, что приводит в действие защиту, отключающую линию.
  4. Эффективно-заземленная. Разновидность заземленной нейтрали, которая используется в высоковольтных сетях 110 кВ и выше. Нулевая точка силовых трансформаторов и потенциал замыкания выносится на землю. Для повышения эффективности работы защит используется дополнительное оборудование заземлитель нейтрали одноколонковый (ЗОН). Положение коммутационного аппарата определяется режимными указаниями. Для распределительных сетей 6-35 кВ используется заземление через низкоомный резистор.

Типы соединения обмоток силовых трансформаторов

Как отмечалось выше, нейтраль – это соединение нулевого проводника трехфазного силового трансформатора или генератора. Чтобы определить тип заземления, достаточно посмотреть на схему энергетического оборудования. Для изолированной нейтрали принципиальная схема – это треугольник.

Остальные варианты реализованы через заземление нулевого проводника на землю, ДГК, низкоомный резистор. Последние в основном используются на подстанциях, которые преобразуют электрическую энергию высокого напряжения на низкое, потребительское. Принципиальная схема – звезда.

Изолированная нейтраль в электрических сетях

Применяется в распределительных сетях 6-35 кВ. Что касается физических проявлений изолированной нейтрали, напряжение возрастает до линейного. Основное назначение подобного типа связывается со следующими моментам:

  1. Сеть не отключается, продолжает работать. Потребители на фазах без замыкания используют однофазные бытовые приборы до отключения линии. Перекос по напряжению в сетях 0,4 кВ отсутствует, в сетях 6-35 увеличивается до линейного.
  2. Реализация таких сетей в разы дешевле в обслуживании, что позволяет экономить значительные средства на распределение электрической энергии.
  3. Высокая надежность работы, особенно на воздушных линиях электропередач. Падение ветки не отключит фидер и обеспечит его работоспособность.

Главными недостатками изолированных сетей считаются:

  1. При однофазном замыкании сеть продолжает работать, защиты не срабатывают, что иногда приводит к несчастным случаям с населением.
  2. Наличие феррорезонансных процессов и возникновение реактивной мощности, которая ухудшает качество электрической энергии.

Резистор и напряжение 110 кВ и выше: как исполнена нулевая точка?

Эффективное заземление – это особый вид нулевого проводника, присоединенного к специализированному оборудования, который применяется в электроустановках выше 1 кВ. Для распределительных сетей используется вариант с заземлением через низкоомные резисторы, которые обеспечивают отключение линии при однофазном замыкании на землю без выдержки времени.

Линии высокого напряжения 110 кВ и выше также используют представленный тип нейтрали, что обеспечивает быстроту срабатывания защит. Для повышения чувствительности работы «релейки» у каждого силового трансформатора имеется специальное оборудование ЗОН. Одноколонковый заземлитель нейтрали обеспечивает также защиту от перегруза.

Заземление через низкоомные резисторы

Использование низкоомных резисторов считается идеальным решением в плане безопасности людей в распределительных сетях, а также в вопросах сохранения изоляции кабельных линий. Реализация защит предполагает выведение нулевой точки на специализированное оборудование, которое обладает меньшим омическим сопротивлением и дает сигнал на отключение линии. Фидер отключается с минимальной выдержкой времени, что является одним из достоинств. К прочим необходимо отнести:

  • Первое, это нейтраль, которая при появление «земли» точно определяет поврежденное направление и отключает требуемую линию.
  • Второе: нет необходимости в дополнительных расчетах и составлении режимных карт при ограниченных возможностях кольцевания распределительных сетей.

Важными недостатками такого типа заземления:

  1. Не эффективен при больших токах замыкания на землю, так как появляются проблемы на подстанциях, где установлены низкоомные резисторы.
  2. Низкая эффективность на ВЛ, а также на линиях большой протяженности. В первом случае малейшее приближение веток деревьев станет причиной отключения фидера. Особенно актуально с потребителями 1 особой, 1 и 2 категории.
  3. Лишние отключения, которые возникают из-за неправильного срабатывания защит (отсутствие АПВ), предполагает простои в потреблении, материальные потери энергоснабжающей организации.

Глухое заземление силовых трансформаторов на землю

Все, что связано с распределительной сетью 0,4 кВ – это нейтраль с глухим заземлением на землю. Представленному типу отводится особое место и роль в плане безопасности. При появлении короткого замыкания на землю срабатывает защита, в частности, перегорают ПН-2 или отключается автомат. Относительно такой сети разрабатываются и защиты для проводки в домах и квартирах. Ярким примером является действие УЗО, обеспечивающее выявление токов утечки.

Основными преимуществами такого типа нейтрали считаются:

  1. Идеально подходит для распределения электрической энергии, обеспечивает работоспособность бытового и специализированного однофазного/трехфазного оборудования.
  2. Схема защиты не требует специализированного и дорогого оборудования. Технические средства по типу предохранителей или автоматов легко справляются с глухим замыканием на землю.

К недостаткам относится:

  1. Защиты нечувствительны при дальнем КЗ. Необходимо точный расчет омического сопротивления петли фазы-нуль и правильный выбор автоматов или предохранителей.
  2. Срабатывания не возникает при отсутствии замыкания на землю. Это представляет опасность для человека, что корректируется через использование изолированных проводов.

Резонансно-заземленные или компенсированные нейтрали

Резонансно-заземленные нейтрали применяются в основном в распределительных сетях напряжением 6-35 кВ, где схема подключения выполняется кабельными линиями. Присоединение нулевой точки осуществляется через специальные плунжерные или регулируемые трансформаторы РУОМ. Подобная система позволяет определить индуктивность в сети при однофазном замыкании, что обеспечивает компенсацию уровня тока.

Нейтраль такого типа снижает риск развития аварии, переход однофазного замыкания в межфазное. Достоинствами для напряжения 6-35 кВ являются:

  1. Основное преимущество связывается с назначением оборудования. Высокая степень защиты изоляции кабельных линий при правильной подстройке.

Недостатками сети с таким типом нейтрали считаются:

  1. Трудность настройки. Может возникнуть недокомпенсация или перекомпенсация, что не позволит правильно использовать оборудование. Для выстраивания необходим расчет индуктивности токов в зависимости от длины линии, мощности трансформаторов. В случае изменения схемы или добавления энергооборудования, плунжерные трансформаторы не всегда справляются с поставленными задачами.
  2. Неправильно настроенное оборудование и высокий износ кабельных линий приводит к цепной реакции, которая предполагает выход из строя нескольких слабых участков сети.
  3. Повышение технических потерь, которые возникают во время работы, а также проблемы безопасности. Компенсация тока на подстанции реализовывается относительно земли.
  4. Невозможность определения линии, где произошло замыкание. Процесс выбора фидера с «землей» осуществляется через сравнение токов гармоник, что не всегда считается эффективным средством получения достоверной информации.

Нулевой проводник и дугогасящая катушка, реактор

Разница резонансно-заземленной нейтрали связывается с используемым оборудованием. Как отмечалось выше, нулевая точка может располагаться на дугогасящей катушке плунжерного типа или на регулируемом реакторе. Основные отличия связываются со следующими моментами:

  1. ДГК предполагает компенсацию через отстроенную систему плунжерных трансформаторов. Настройка реализована через расчеты реальной сети службой релейной защиты. При возникновении замыкания на землю происходит компенсация токов, основанная на индуктивности. Процесс не регулируется и не подстраивается, что является неприятным моментом в случае появления «земли» в нескольких точках разных линий.
  2. ДГР – более современное оборудование, которое предполагает использование автоматических систем определения индуктивности сети. Среди популярных вариантов считаются реакторы типа «РУОМ» с подстройкой «САМУР». Реализация опроса выполняется в реальном времени, что обеспечивает работоспособность даже при нескольких повреждениях с замыканием на землю.
Читайте также  Механизм трансформации пантограф что это?

Неважно глухозаземлена нейтраль или изолирована, применение каждого типа найдет место в современной электроэнергетике. А знание особенностей позволит разобраться с физической сущностью вопроса.

Классификация нейтралей в сетях и электроустановках

Нейтралью называют соединение трансформаторных или генераторных обмоток в одной точке, при соединении трехфазной электрической сети переменного тока звездой. Если концы обмоток соединены треугольником, применяют схему «скользящего треугольника».

Через этот проводник протекает ток, в случае аварийной ситуации или при технологическом перекосе фазных значений, важно понимать, какой режим выбран для нейтрали.

  1. Виды нейтралей в сетях
  2. Сети до 1 кВ
  3. TN
  4. ТТ
  5. IT
  6. Сети более 1 кВ
  7. Изолированная нейтраль
  8. Эффективно-заземленная нейтраль
  9. Заземление посредством резистора или реактора
  10. Виды нейтралей в электроустановках
  11. Изолированный заземлитель
  12. Резонансно-заземленная система
  13. Глухозаземленная сеть
  14. Эффективно-заземленная сеть

Виды нейтралей в сетях

В зависимости от используемых сетей, режим нейтрали разделяют, с учетом использования на следующих магистралях:

  • до 1 кВ;
  • свыше 1 кВ.

Сети напряжением менее 1 000 В по способу выполнения нейтрали в свою очередь подразделяют на системы TN, IT, TT, первые буквы в обозначениях которых говорят о следующем:

  • Т (терра) – глухозаземленной нейтрали;
  • I (изолят) – изолированной нейтрали.

Расшифровка вторых букв свидетельствует о таком значении:

  • N (нейтраль) – заземление ОПЧ выполнено посредством глухозаземленной нейтрали от энергоисточника;
  • Т – независимое заземление.

TN делят еще на три подгруппы с дополнительным обозначением С, S и С-S. В данном случае С и S соответственно указывают на возможность совмещения в одном заземляющем проводнике защитных и рабочих функций (комбинированный и раздельный).

Сети до 1 кВ

Далее представлен краткий обзор систем нейтралей для сетей с напряжением менее 1 кВ.

Выполняют с глухозаземленной нейтралью, с заземлением через нее открытых проводящих частей. Заземляющий проводник непосредственно соединяют с заземлительным контуром электросваркой или болтовым контактом. Возможно подключение через незначительный резистор (токовый трансформатор).

В указанных сетях назначение глухозаземленной нейтрали предполагает питание потребителей с однофазными и трехфазными характеристиками.

В данном случае также устраивают глухозаземленную нейтраль, а для заземления открытых проводников подключенной установки используют отдельное устройство, отделенное от нейтрального провода. Т. е. вывод защитного заземления производят не от энергоисточника, а от потребляющего агрегата.

Для системы IT трансформаторные и генераторные нейтральные проводники изолированы и заземлены, с применением устройства с высоким сопротивлением, при независимом заземлении открытой части. Такой способ применяют на электросетях для подключения промышленных комплексов, где перерыв энергоснабжения не допускается.

Сети более 1 кВ

На высоковольтных сетях применяются другие способы подключения нейтрали.

  • сети 6 – 35 кВ с изолированной нейтралью,
  • сети 6 – 35 кВ с нейтралью, заземленной через дугогасящий ректор,
  • сети 6 – 35 кВ с нейтралью, заземленной через активное сопротивление,
  • сети 110 кВ с эффективно заземленной нейтралью,
  • сети 220 кВ и выше с глухозаземленной нейтралью.

Изолированная нейтраль

Система при отсутствии нулевой точки, когда три фазы соединены треугольником. Применяют при величине напряжения в диапазоне от 6 до 35 кВ.

Изолированная нейтраль

Эффективно-заземленная нейтраль

Используют для сетей, при значении напряжения более 110 кВ. При возникновении однофазного замыкания, на фазах, сохранивших целостность, величина напряжения удерживается на уровне 0,8 по отношению к междуфазному при нормальной работе сети. Требует выполнения сложного и дорогого заземлительного контура, поскольку система рассчитана на большие токи короткого замыкания.

Заземление посредством резистора или реактора

Применяют в сетях от 6 до 35 кВ, чтобы снизить значение тока при КЗ. При использовании реактора, в момент, когда задействован заземлитель, через него протекает КЗ емкостного происхождения и индуктивного (от данного устройства). При равной величине этих токов, происходит резонанс, с нулевой нагрузкой в сети.

При использовании резистора, возможна организация низкоомного и высокоомного заземления, в зависимости от величины тока, инициируемого сопротивлением при пробое на землю. При малых емкостных токах в сети, заземление отличается высокоомными характеристиками, что позволяет задержку отключения подачи энергии.

При большом емкостном токе, предусмотрено использование низкоомного заземления.

Виды нейтралей в электроустановках

Использование нейтрали в электроустановках – способ сохранить целостность оборудования и обеспечить безопасность обслуживающего персонала при авариях. Предусмотрено применение следующих заземлительных систем:

  • изолированной;
  • резонансно-заземленной;
  • глухозаземленной;
  • эффективно-заземленной.

Далее – детальнее о каждом из перечисленных способов.

Изолированный заземлитель

В данном случае нейтраль отсутствует. Проводники соединяют треугольником, при отсутствии нулевого вывода. Если возникают однофазные пробои на землю, изменения энергопотребления рабочими фазами не происходит. Используют для установок с характеристиками напряжения от 6 до 35 кВ.

Резонансно-заземленная система

Нулевой провод подключают посредством трансформаторной или генераторной обмотки, с дугогасящими катушками(катушку Петерсона), представляющую собой реактор с изменяемой индуктивностью. Используемое оборудование снижает ток, предотвращая масштабные повреждения установки.

Глухозаземленная сеть

Наиболее распространенный способ, используемый для установок бытового назначения. Низковольтные контакты трансформаторных обмоток соединяют разомкнутой звездой, при заземлении нулевого провода посредством контура трансформатора или подстанции. При возникновении пробоя, создаваемый потенциал с землей включает защиту, выключающую устройство.

Эффективно-заземленная сеть

Применяют для сетей с напряжением более 110 кВ. Нейтраль выводят на землю через заземлитель одноколонкового типа (ЗОН). Это оборудование снижает значение токов, возникающих при пробое.

Использование нейтрали – один из способов, чтобы сохранить целостность оборудования и обеспечить безопасность персонала. Выбор оптимальной методики зависит от множества факторов и влияет на эффективность данной защиты в конкретной ситуации.

Режимы работы нейтралей трансформаторов системы электроснабжения

Трансформаторы имеют нейтрали, режим работы или способ рабочего заземления которых обусловлен:

  • требованиями техники безопасности и охраны труда персонала,
  • допустимыми токами замыкания на землю,
  • перенапряжениями, возникающими при замыканиях на землю, а также рабочим напряжением неповрежденных фаз электроустановки по отношению к земле, определяющих уровень изоляции электротехнических устройств,
  • необходимостью обеспечения надежной работы релейной защиты от замыкания на землю,
  • возможностью применения простейших схем электрических сетей.

При однофазном замыкании на землю нарушается симметрия электрической системы: изменяются напряжения фаз относительно земли, появляются токи замыкания на землю, возникают перенапряжения в сетях. Степень изменения симметрии зависит от режима нейтрали .

Режим нейтрали оказывает существенное влияние на режимы работы электроприемников, схемные решения системы электроснабжения, параметры выбираемого оборудования.

Нейтраль сети — это совокупность соединенных между собой нейтральных точек и проводников, которая может быть изолирована от сети либо соединена с землей через малые или большие сопротивления.

Используются следующие режимы нейтрали:

эффективно заземленная нейтраль.

Выбор режима нейтрали в электрических сетях определяется бесперебойностью электроснабжения потребителей, надёжностью работы, безопасностью обслуживающего персонала и экономичностью электроустановок.

Нейтрали трансформаторов трёхфазных электрических установок, к обмоткам которых подключены электрические сети, могут быть заземлены непосредственно, либо через индуктивные или активные сопротивления, либо изолированы от земли.

Если нейтраль обмотки трансформатора присоединена к заземляющему устройству непосредственно или через малое сопротивление, то такая нейтраль называется глухозаземлённой , а сети, подсоединённые к ней, соответственно, — сетями с глухозаземлённой нейтралью .

Нейтраль, не соединённая с заземляющим устройством называется изолированной нейтралью .

Сети, нейтраль которых соединена с заземляющим устройством через реактор (индуктивное сопротивление), компенсирующий ёмкостной ток сети, называются сетями с резонанснозаземлённой либо компенсированной нейтралью .

Сети, нейтраль которых заземлена через резистор (активное сопротивление) называется сеть с резистивнозаземлённой нейтралью .

Электрическая сеть, напряжением выше 1 кВ, в которой коэффициент замыкания на землю не превышает 1,4 (коэффициент замыкания на землю – отношение разности потенциалов между неповреждённой фазой и землёй в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землёй в этой точке до замыкания ) называется сеть с эффективнозаземлённой нейтралью .

Электроустановки в зависимости от мер электробезопасности разделяются на 4 группы:

  • электроустановки напряжением выше 1 кВ в сетях с эффективнозаземленной нейтралью (с большими токами замыкания на землю),
  • электроустановки напряжением выше 1 кВ в сетях с изолированной нейтралью (с малыми токами замыкания на землю),
  • электроустановки напряжением до 1 кВ с глухозаземленной нейтралью,
  • электроустановки напряжением до 1 кВ с изолированной нейтралью.

Режимы нейтрали трехфазных систем

Напряжение, кВРежим нейтралиПримечание
0,23Глухозаземленная нейтральТребования техники безопасности. Заземляются все корпуса электрооборудования
0,4
0,69Изолированная нейтральДля повышения надежности электроснабжения
3,3
6
10
20
35
110Эффективно заземленная нейтральДля снижения напряжения незамкнутых фаз относительно земли при замыкании одной фазы на землю и снижения расчетного напряжения изоляции
220
330
500
750
1150

Системы с глухозаземленной нейтралью — это системы с большим током короткого замыкания на землю. При коротком замыкании место замыкания отключается автоматически. В системах 0,23 кВ и 0,4 кВ это отключение диктуется требованиями техники безопасности. Одновременно заземляются все корпуса оборудования.

Системы 110 и 220 кВ и выше выполняются с эффективно заземленной нейтралью . При коротком замыкании место замыкания также отключается автоматически. Здесь заземление нейтрали приводит к снижению расчетного напряжения изоляции. Оно равно фазному напряжению неповрежденных фаз относительно земли. Для ограничения величины токов короткого замыкания на землю заземляются не все нейтрали трансформаторов (эффективное заземление).

Режимы нейтрали трехфазных систем: а — заземленная нейтраль, б — изолированная нейтраль

Изолированной нейтралью называется нейтраль, не присоединенная к заземляющему устройству или присоединенная через аппараты, компенсирующие емкостный ток в сети, трансформаторы напряжения и другие аппараты, имеющие большое сопротивление.

Система с изолированной нейтралью применяется для повышения надежности электроснабжения. Характеризуется тем, что при замыкании одной фазы на землю возрастает напряжение фазных проводов относительно земли до линейного напряжения, и симметрия напряжений нарушается. Между линией и нейтралью протекает емкостной ток. Если он меньше 5А, то допускается продолжение работы до 2 ч для турбогенераторов мощностью до 150 МВт и для гидрогенераторов — до 50 МВт. Если установлено, что замыкание произошло не в обмотке генератора, а в сети, то допускается работа в течение 6 ч.

Сети от 1 до 10 кВ — это сети генераторного напряжения электрических станций и местные распределительные сети. При замыкании на землю одной фазы в такой системе напряжение неповрежденных фаз относительно земли возрастает до величины линейного напряжения. Поэтому изоляция должна быть рассчитана на это напряжение.

Основное преимущество режима изолированной нейтрали — способность подавать энергию электроприемникам и потребителям при однофазном замыкании на землю.

Недостатком этого режима являются трудности о обнаружении места замыкания на землю.

Повышенная надежность режима (т.е. возможность нормальной работы при однофазных замыканиях на землю, которые составляют значительную часть повреждений электрооборудования) изолированной нейтрали обуславливает обязательное его применение при напряжении выше 1 кВ до 35 кВ включительно, поскольку эти сети питают большие группы электроприемников и потребителей.

С напряжения 110 кВ и выше применение режима изолированной нейтрали становится экономически невыгодным, так как повышение напряжения относительно земли с фазного до линейного требует существенного усиления фазной изоляции. Применение режима изолированной нейтрали до 1 кВ допускается и оправданно при повышенных требованиях к электробезопасности.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Виды нейтралей в электрических сетях

Электрические сети, как известно, делятся в зависимости от класса напряжения – до и выше 1000В. Нейтраль – это общая точка обмоток у трансформаторов и генераторов, соединенных в звезду. Если же схема обмоток треугольник и необходим ноль, то можно вспомнить про схему «скользящий треугольник». Будем рассматривать только сети переменного тока.

Виды заземления нейтрали в сетях до 1кВ

В электрических сетях напряжением до 1000В принято использовать три системы заземления нейтрали – это TN, IT, TT. Каждая из букв несет определенный смысл, разберемся:

  • 1-ая буква описывает способ заземления нейтрали источника питания
    • T (terra) – нейтраль глухозаземленная
    • I (isolate) – нейтраль изолирована (и – изолирована, легко запомнить)
  • 2-ая буква показывает способ заземления открытых проводящих частей (ОПЧ) с землей
    • N (neutral) – ОПЧ заземлены через глухозаземленную нейтраль источника питания
    • T – ОПЧ заземлены независимо от источника питания

В свою очередь система TN делится на три подсистемы – TN-C, TN-S и TN-C-S. В рамках данной подсистемы третьи буквы (C — combine, S — separe) обозначают совмещение или разделение в одном проводе функций нулевого защитного (PE) и нулевого рабочего (N) проводника.

Рассмотрим теперь каждую систему более подробно.

Система заземления TN

В этой системе нейтраль глухозаземлена, а открытые проводящие части заземлены через эту глухозаземленную нейтраль. Глухозаземленная – это значит что нейтраль присоединена непосредственно к заземляющему устройству (болтом, сваркой) или через малое сопротивление (трансформатор тока).

В сетях до 1кВ глузозаземленная нейтраль используется для питания однофазных и трехфазных нагрузок.

Система заземления TT

Система TT предполагает, что нейтраль источника питания глухозаземлена, а ОПЧ оборудования заземлены заземляющим устройством электрически несвязанным с нейтралью источника. То есть защитный PE-проводник создается у самого потребителя, а не идет от источника питания.

Система заземления IT

В системе IT нейтраль генератора или трансформатора изолирована или заземлена через устройства, имеющие высокое сопротивление, а ОПЧ заземлены независимо. Эта система не рекомендуется для жилых зданий, используется там, где при первом замыкании на землю не требуется перерыв питания. Это могут быть электроустановки с повышенными требованиями надежности снабжения электроэнергией.

Виды заземления нейтрали в электросетях выше 1кВ

В сетях напряжением выше 1000В используется изолированная (незаземленная) нейтраль, эффективно заземленная нейтраль и резонансно-заземленная нейтраль. Глухозаземленная нейтраль используется только в сетях до 1кВ.

Сети с незаземленной (изолированной) нейтралью

Исторически первая система заземления. Нейтральная точка источника питания не присоединена к заземляющему устройству. Обмотки соединены в треугольник и выходит, что нулевая точка отсутствует. Применяется на напряжение 3-35кВ.

Сети с эффективно-заземленной нейтралью

Этот вид заземления используется в сетях напряжением выше 110кВ. Достоинство заключается в том, что при однофазных замыканиях на неповрежденных фазах напряжение относительно земли будет равно 0,8 междуфазного в нормальном режиме работы. В этой системе сам контур заземления выполняется с учетом протекания больших токов КЗ, что делает его сложным и дорогим.

Сети с нейтралью, заземленной через резистор или реактор

Применяется в сетях 3-35кВ. Используется для уменьшения величины токов КЗ. Исторически был вторым способом заземления нейтрали. Заземление через резистор используется во всем мире, через реактор – в странах бывшего союза.

Заземление через реактор – при отсутствии замыкания ток через реактор мал. Когда происходит замыкание фазы на землю, то через место повреждения течет емкостной ток КЗ и индуктивный ток реактора. Если их величина равна, то в месте замыкания отсутствует ток (явление резонанса).

Заземление через резистор бывает низкоомным и высокоомным. Разница в величине тока, создаваемым резистором при замыкании на землю. Высокоомное применяется в сетях с малыми емкостными токами, в этом случае замыкание можно не отключать немедленно. Низкоомное заземление наоборот используется при больших емкостных токах.

Выбор виды заземления нейтрали зависит от следующих факторов:

  • величина емкостного тока сети
  • допустимая величина однофазного замыкания
  • возможности отключения однофазного замыкания
  • вида и типа релейных защит
  • безопасности персонала
  • наличия резерва

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector