Момент нагрузки КВТ м что это?

Момент нагрузки КВТ м что это?

Удобно ли рассчитывать потери напряжения через моменты?

Практически в каждом проекте приходится рассчитывать потери напряжения. Существуют разные способы расчета, но все они, в принципе, основаны на одних и тех же формулах, поэтому и результаты должны быть одинаковые. Так ли это? Сейчас мы проверим.

Многие считают потери напряжения через моменты нагрузок и периодически мне задают вопросы о правильности расчетов в моих программах. Сейчас вы сами увидите, насколько эффективна моя программа по расчету потери напряжения и насколько она выдает достоверные результаты.

Что такое момент нагрузки?

М=P*L, где

М – момент нагрузки, кВт*м;

Р – мощность, кВт;

L – длина участка, м.

Чтобы рассчитать потери напряжения через момент нагрузки нам необходимо знать передаваемую мощность, длину участка и иметь вспомогательные таблицы для расчета.

Моменты для медных и алюминиевых кабелей в однофазной сети (220В):

Моменты для медных и алюминиевых кабелей в однофазной сети (220В)

Моменты для медных и алюминиевых кабелей в трехфазной сети (380В):

Моменты для медных и алюминиевых кабелей в трехфазной сети (380В)

Суть расчета заключается в том, чтобы посчитать момент и по таблице определить потери напряжения для нужного сечения кабеля.

А что если полученный момент нагрузки отличается от табличного значения? Придется округлять либо применять дополнительно интерполяцию.

А что если в таблице нет нужного сечения? Придется искать расширенные таблицы (возможно где-то есть).

Лично я никогда не считал потери напряжения через моменты, т.к. этот способ не удобен и не отвечает последним требованиям нормативных документов.

Сейчас мы проверим, правильно ли считает потери напряжения моя программа.

Я выбрал по 2 значения в каждой таблице с моментами. Думаю нет смысла проверять каждое значение.

Результаты проверки программы по расчету потери напряжения в однофазной сети:

Результаты проверки программы по расчету потери напряжения в однофазной сети

Наверняка вы заметили, что в моей программе результаты примерно на 10% выше. В чем же дело? Разность результатов обусловлена разными значениями удельного сопротивления меди и алюминия. Если взять другие значения, то получим практически точно такие же значения:

Удельное сопротивление 1Р 0,02/0,033 Ом*мм2/м

Я же использую значения, которые указаны в ГОСТ Р 50571.5.52-2011.

Результаты проверки программы по расчету потери напряжения в трехфазной сети:

Результаты проверки программы по расчету потери напряжения в трехфазной сети

Результаты с учетом уменьшенного значения удельного сопротивления:

Удельное сопротивление 3Р 0,02/0,033 Ом*мм2/м

Я думаю, теперь у вас не возникнут вопросы по поводу правильности расчета потери напряжения при помощи моих программ.

А вам удобно считать потери напряжения через моменты?

P.S. Ваша помощь позволяет вам получить не только мои программы, но и способствует написанию новых полезный статей, записи полезных видеороликов.

Советую почитать:

комментариев 9 “Удобно ли рассчитывать потери напряжения через моменты?”

Привет, Игорь! Номинальные напряжения сети давно изменились на 0,23 и 0,4 кВ.

Значение 230/400 В является результатом эволюции систем 220/380 В и 240/415 В, которые завершили использовать в Европе и во многих других странах. Однако системы 220/380 В и 240/415 В до сих пор продолжают применять.

Номинальное напряжение 220/230 В принято в соответствие с требованиями ГОСТ 32144-2013. Так же действуют другие системы нормирования напряжений: в соответствие с ГОСТ 29322-2014 номинальные напряжения равны 230/400 В, в соответствие с ГОСТ 23366-78 номинальные напряжения принимаются: на выходах источников и преобразователей электроэнергии – 230/400 В, а на нагрузке – 220/380 В.

Я говорил об этом:

ГОСТ 29322-92 (IEC 60038:2009) Напряжения стандартные — Номинальные напряжения уже существующих сетей напряжением 220/380 и 240/415 В должны быть приведены к рекомендуемому значению 230/400 В. До 2003 г. в качестве первого этапа электроснабжающие организации в странах, имеющих сеть 220/380 В, должны привести напряжения к значению 230/400 В (%).

Номинальное напряжение 220/230 В принято в соответствие с требованиями ГОСТ 32144-2013

Не нашел я там ничего про стандарты напряжений кроме упоминания ГОСТ 29322-92, который эволюционировал в ГОСТ 29322-2014, где принят стандарт — 230/400 В.:

Номинальное напряжение системы переменного тока в диапазоне от 100 до 1000 В следует выбирать из значений, приведенных в Таблице 1.

a) Значение 230/400 В является результатом эволюции систем 220/380 В и 240/415 В, которые завершили использовать в Европе и во многих других странах. Однако системы 220/380 В и 240/415 В до сих пор продолжают применять.

Множество систем 220/380 давно перевели на 230/400, и во всех новых, с которыми встречался, напряжение в розетках 230/400 В. В новых коттеджных поселках в домах, которые находятся в начале линии недалеко от трансформатора, напряжение >240 В.

«ГОСТ 23366-78» — может его забыли отменить? Надо его еще поизучать.

Я считаю через моменты. По формуле, указанной в том же справочнике, что и таблицы из статьи. dU=P*L/(C*q). Где q — сечение проводника. С — коэффициент, зависящий от материала проводника и напряжения сети. Для меди в данном справочнике указан С=77. Алюминимй — 44. Хотя в других источниках встречал также и другие цифры. Но большинство справочников дают 77. Формула простая и удобная. Легко считать любые значения.

Кто считает потери напряжения через моменты нагрузок, докажите мне откуда взялись в справочникне коэффицент С, откуда эти цифры?

Физику и ТОЭ все ведь изучали, у меня никак не получалось вывести справочные значения.

Через формулу для трёхфазной сети √3*Ток*длина*(Rуд*cos+Xуд*sin) = количество потерянных вольт.

Вольт/вольт = % потерь напряжения.

В этой формуле всё можно вывести физически. А как через моменты это всё выводить?

У вас видимо ошибка:

Rуд ® — активное сопротивление 1 км линии.

Xуд (x) — индуктивное сопротивление 1 км линии.

Эти таблицы для нагрузок с cos фи = 1?

Т.е. если cos фи = 0,8, то эти таблицы будут показывать заниженные значения падения напряжения?

Да, но погрешность будет не такая уж критичная.

Зачем вам эти таблицы? Не забивайте голову ненужной и устаревшей информацией))

Эти таблицы создавались когда у строителей даже калькулятора не было, а посчитать потери уже было надо. Очень удобно на коленке считать разветвленные сети и сети с большим количеством распределенных потребителей. Например сети уличного освещения. В некоторых случаях этот метод даже сейчас может дать фору программным комплексам в скорости получения результата приемлемой точности

Монтаж электрооборудования
и средств автоматизации

электронный учебно-методический комплекс

Электропроводка должна соответствовать условиям окружающей среды, ценности сооружений и их архитектурным особенностям.

Изоляция проводов и кабелей должна соответствовать номинальному напряжению сети, а защитные оболочки – способу прокладки. Нулевые провода должны иметь изоляцию, равноценную изоляции фазных проводов.

Сечение проводов выбирают, руководствуясь значением допустимой потери напряжения, допустимого нагрева проводов током нагрузки и условиями механической прочности. Допустимые потери напряжения в осветительных сетях составляют 2,5% от номинального напряжения, в силовых сетях – 10%. Допустимая плотность тока зависит от материала жилы провода, вида изоляции, способа прокладки, сечения жилы. Для алюминиевых жил плотность тока составляет 1,6. 10 А/мм 2 , для медных – 2. 17 А/мм 2 . Большие значения плотности тока допускаются для малых сечений проводов: 1,5; 2,5; 4 мм 2 .

По условиям механической прочности для алюминиевых проводов приняты следующие минимальные сечения: для вводов к потребителям и подводки к электросчетчикам – 4 мм 2 , для проводов в стояках жилых зданий – 6 мм 2 , для проводов на изоляторах, расположенных друг от друга до 6 м, – 4 мм 2 , при расстоянии между изоляторами 12 м – 10 мм 2 , 25 м – 16 мм 2 . Минимальное сечение жил медных проводов по условиям механической прочности для переносных токоприемников составляет 0,75 мм 2 , переносных шланговых кабелей – 1,5 мм 2 , кабелей для передвижных электроприемников – 2,5 мм 2 , провода для стационарной прокладки внутри помещения на роликах – 1 мм 2 , для прокладки на изоляторах – 1,5 мм 2 , для прокладки в наружных установках на роликах – 1,5 мм 2 , на изоляторах – 2,5 мм 2 .

Сечение проводов по допустимой потере напряжения рассчитывают по формуле:

где S – сечение провода, мм 2 ; М – момент нагрузки, кВт∙м; DU – допустимые потери напряжения, %; С – коэффициент, зависящий от материала жилы, рода тока, значения напряжения и системы распределения энергии.

Например, для переменного тока значение коэффициента приведено в таблице

Задание. Выбрать сечение медного провода для осветительной проводки для подключения нагрузки 2 кВт, длина трассы провода 100 метров, питание выполнено по схеме 1Ф+0.

Решение. 1. Выполняем расчет сечения провода по допустимой потере напряжения, по формуле: ;

Момент нагрузки – М определяется по формуле:

, кВт∙м;

где: Р – мощность потребителя (нагрузка), кВт;

l – длина линии, м.

кВт·м;

Коэффициент С определяем по таблице при питании по схеме 1Ф+0, С = 12,8 для медного проводника.

DU – для осветительной сети составляет 2,5 %.

Определяем минимальное сечение проводника, и принимаем ближайшее большее сечение из стандартного ряда сечений.

мм 2 ,

так как сечения провода 6,25 мм 2 не существует принимаем ближайшее большее сечение из стандартного ряда сечений – 10 мм 2 .

2. Определим минимальное сечение провода для осветительной проводки по механической прочности.

Незащищенные изолированные для стационарной проводки внутри помещений по основаниям, на роликах, клицах и тросах – 1,0 мм 2 .

3. Определим минимальное сечение провода для осветительной проводки по длительному нагреву током нагрузки.

Необходимо определить наибольший ток нагрузки, который будет протекать по линии. Данный ток возникает при включении максимально возможной нагрузки на линии (например: при включении всех ламп). При питании по схеме 1Ф+0 наибольший ток нагрузки определяется по формуле

, А

где: U – напряжение сети, В;

Р – мощность потребителя (нагрузка), Вт

cosj – коэффициент мощности нагрузки. При чисто активной нагрузке (лампы накаливания, трубчатые нагревательные элементы), cosj = 1.

, А

Далее по таблицам ПУЭ [6], по таблице 1.3.4. (приведена ниже в качестве примера, только для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами) определяем способ прокладки – например: открыто, ищем по таблице ближайший больший длительно допустимый ток – 11 А, что соответствует сечению провода 0,5 мм 2 .

Из трех сечений проводов полученных разными способами выбираем наибольшее значение. Это 10 мм 2 , которое получилось при определении сечения по допустимым потерям напряжения.

В большинстве случаев обходятся без проведения расчетов. Достаточно соблюдать установленные ПУЭ минимальные сечения проводов и предельные расстояния между точками крепления проводов, приведенные в таблице. Следует также соблюдать наименьшие сечения заземляющих и нулевых проводов.

Наименьшие сечения проводов по механической прочности

* Должны применяться самонесущие провода (марок APT, АВТ и т. п.).

Наименьшие расстояния между креплениями для различных проводов указываются в руководствах и инструкциях по их монтажу.

Расчет механической прочности проводов выполняется при проектировании воздушных линий и тросовых проводок.

Окончательно в осветительной сети принимаются наибольшие из сечений проводов, выбранные по условиям нагревания, потерь напряжения и механической прочности. Заметим также, что сечения могут быть скорректированы при выборе устройства защиты линии, поскольку между током защитного аппарата и сечением провода устанавливается определенная зависимость.

© ФГБОУ ВПО Красноярский государственный аграрный университет, 2014
© Институт Энергетики и управления энергетическими ресурсами АПК, 2014

Как правильно выбрать кабель. Что такое момент нагрузки и как учитывать нагрев жил. На эти вопросы вы найдете ответы в данной статье.

Как правильно выбрать кабель

Одной из важнейших характеристик кабельной продукции является длительно допустимая величина тока, приходящегося на жилу. Во всех соответствующих справочниках, включая Правила Устройства Электроустановок, приводятся таблицы, позволяющие, зная сечение и условия прокладки, определить токовую нагрузку. Однако для их правильного использования необходимо принимать во внимание еще ряд параметров. В противном случае, может возникнуть неприятная ситуация, когда во время последующей эксплуатации из-за нагрева изоляция жил кабеля повреждается, со всеми вытекающими последствиями.

Допустимое значение тока

Известно, что зная мощность устройства-потребителя и напряжение сети, путем нехитрых расчетов можно получить значение тока и, найдя ближайшее число в соответствующей таблице ПУЭ, подобрать кабель. Однако сечение, выбранное по длительно допустимому току, предполагает, что кабель будет нагреваться до температуры +65 градусов при воздухе +25. Холодными такие жилы назвать нельзя, поэтому если расчетное и табличное значения находятся слишком близко (например, 14 и 16 А), то имеет смысл использовать кабель с более толстыми жилами. Исключения составляют случаи, когда подключенное устройство потребляет максимальный ток кратковременно (около 10 минут), давая возможность кабелю остыть. Таким образом, подбор без учета особенностей эксплуатации является ошибочным и может применяться лишь для ориентировочных «прикидок».

Поправка на нагерв

Если посмотреть более внимательно, то в справочной таблице видно, что с увеличением количества токопроводящих жил уменьшается допустимый ток – это связано с взаимным нагревом. Таким образом, при прокладке нескольких кабелей в одном кабельном коробе, что сейчас является нормой, необходимо учитывать этот момент. Для этого в ПУЭ существует таблица, в которой приводятся коэффициенты, позволяющие более правильно подобрать сечение жил кабеля и их материал, в зависимости от температуры воздуха. Рассмотрим конкретный пример: по току выбран кабель, жилы и изоляция которого, согласно паспортным данным, допускают длительную работу при нагреве +65 градусов и температуре окружающей среды +25. Используя таблицу поправок, получаем, что при морозе -5 допустимый ток будет на 1,32 раза больше, а вот при воздухе +35 составит всего лишь 0,87 от полученного согласно сечения. К примеру, устройство с мощностью 3 кВт, работающее продолжительно, в сетях 220 В потребляет около 16 А. В номинальном режиме допускается использовать двужильный медный кабель с сечением 1 мм.кв., что составляет 15 А. Однако если учитывать возможные «прыжки» температуры (времена года или особенности прокладки), то может потребоваться использование поправки вплоть до 0,61 (при воздухе +50). То есть, в этом случае для такого кабеля продолжительно допустимый ток составит не более 9,15 А (3).

Часто монтажникам приходится подбирать кабельную продукцию для прокладки в коробах, размещенных внутри помещений со стабильной температурой. Не исключение и прокладка многомодового оптического кабеля в сетях ВОЛС. В этом случае для упрощения подбора можно воспользоваться очередной таблицей справочника. При ее использовании также нужно учитывать степень загрузки потребителей.

Момент нагрузки

Как известно, чем больше длина кабельной линии, тем выше потеря напряжения, вызванная сопротивлением проводника. В большинстве случаев данную величину потерь принимают равной или меньшей 5%. Для получения более точных данных можно воспользоваться классической формулой Ома, учитывающей проходящий ток и измеренную единицу сопротивления материала жил. Однако можно поступить иначе и прибегнуть к табличным данным, где уже указывается величина потерь в зависимости от параметра «момент нагрузки». Его значение получают путем умножения длины используемой кабельной трассы в метрах на потребляемую устройством мощность в киловаттах. Обычно корректировка необходима при длине линии от 30 метров.

Приведем пример. Длина трассы 20 метров; мощность потребителя 3 кВт; сетевое напряжение 220 В; выбранное сечение 1,5 мм.кв. медь, две жилы. Вычисляем нагрузочный момент: 20 м*3 кВт=60 м*кВт. По таблице дельта U для этого значения составляет от 3 до 4%, что ниже 5%. Следовательно, при таких условиях выбранный кабель пригоден. Иначе необходимо выбирать большее сечение жил кабеля.

Подобные таблицы существуют для низковольтных цепей. При проектировании и монтаже сетей с действующим значением менее 220 В обязательно необходимо учитывать момент нагрузки. Это объясняется тем фактом, что небольшое падение напряжения оборудование, рассчитанное на 220 В, даже «не заметит», а вот низковольтное может «отказаться» работать, так как нет запаса мощности. Именно поэтому источники ЭДС с малым действующим значением напряжения следует размещать как можно ближе к потребителям. Например, существует сеть на 12 В, в которой используется двужильный кабель (медь) длиной 3 м, сечением жил 1,5 мм.кв. и лампа мощностью 0,1кВт. Момент нагрузки составит 3 м*0,1 кВт=0,3 м*кВт. По таблице видно, что потери превышают 5%, следовательно, для нормальной работы нужно выбирать кабель с большим сечением жил или же уменьшать длину линии и/или мощность лампы. Разумеется, на работу ламп накаливания это особо не повлияет, но для измерительных приборов или галогенных светильников с трансформаторами может оказаться существенным. В рассмотренном примере нагрузка подключена в конце трассы. Для параллельного соединения потребителей применяются другие формулы.

Данный «табличный» способ расчета не учитывает изменения сопротивления из-за нагрева проводников. Поэтому, в зависимости от условий эксплуатации, при подборе кабеля рекомендуется использовать поправочные коэффициенты.

Как выбрать сечение кабеля — советы проектировщика

В статье рассмотрены основные критерии выбора сечения кабеля, даны примеры расчетов.

На рынках часто можно увидеть написанные от руки таблички, указывающие, какой кабель необходимо приобрести покупателю в зависимости от ожидаемого тока нагрузки. Не верьте этим табличкам, так как они вводят Вас в заблуждение. Сечение кабеля выбирается не только по рабочему току, но и еще по нескольким параметрам.

Прежде всего, необходимо учитывать, что при использовании кабеля на пределе его возможностей жилы кабеля нагреваются на несколько десятков градусов. Приведенные на рисунке 1 величины тока предполагают нагрев жил кабеля до 65 градусов при температуре окружающей среды 25 градусов.

Если в одной трубе или лотке проложено несколько кабелей, то вследствие их взаимного нагрева (каждый кабель нагревает все остальные кабели) максимально допустимый ток снижается на 10 – 30 процентов.

Также максимально возможный ток снижается при повышенной температуре окружающей среды. Поэтому в групповой сети (сеть от щитков до светильников, штепсельных розеток и других электроприемников) как правило, используют кабели при токах, не превышающих значений 0,6 – 0,7 от величин, приведенных на рисунке 1.

Рис. 1. Допустимый длительный ток кабелей с медными жилами

Исходя из этого повсеместное использование автоматических выключателей с номинальным токов 25А для защиты розеточных сетей, проложенных кабелями с медными жилами сечением 2,5 мм2 представляет опасность. Таблицы снижающих коэффициентов в зависимости от температуры и количества кабелей в одном лотке можно посмотреть в Правилах устройства электроустановок (ПУЭ).

Дополнительные ограничения возникают, когда кабель имеет большую длину. При этом потери напряжения в кабеле могут достичь недопустимых значений. Как правило, при расчете кабелей исходят из максимальных потерь в линии не более 5%.

Потери рассчитать не сложно, если знать величину сопротивления жил кабелей и расчетный ток нагрузки. Но обычно для расчета потерь пользуются таблицами зависимости потерь от момента нагрузки. Момент нагрузки вычисляют как произведение длины кабеля в метрах на мощность в киловаттах.

Данные для расчета потерь при однофазном напряжении 220 В показаны в таблице 1. Например для кабеля с медными жилами сечением 2,5 мм2 при длине кабеля 30 метров и мощности нагрузки 3 кВт момент нагрузки равен 30х3=90, и потери составят 3%. Если расчетное значение потерь превышает 5%, то необходимо выбрать кабель большего сечения.

Таблица 1. Момент нагрузки, кВт х м, для медных проводников в двухпроводной линии на напряжение 220 В при заданном сечении проводника

По таблице 2 можно определить потери в трехфазной линии. Сравнивая таблицы 1 и 2 можно заметить, что в трехфазной линии с медными проводниками сечением 2,5 мм2 потерям 3% соответствует в шесть раз больший момент нагрузки.

Тройное увеличение величины момента нагрузки происходит вследствие распределения мощности нагрузки по трем фазам, и двойное – за счет того, что в трехфазной сети при симметричной нагрузке (одинаковых токах в фазных проводниках) ток в нулевом проводнике равен нулю. При несимметричной нагрузке потери в кабеле возрастают, что необходимо учитывать при выборе сечения кабеля.

Таблица 2. Момент нагрузки, кВт х м, для медных проводников в трехфазной четырехпроводной линии с нулем на напряжение 380/220 В при заданном сечении проводника

Потери в кабеле сильно сказываются при использовании низковольтных, например галогенных ламп. Это и понятно: если на фазном и нулевом проводниках упадет по 3 Вольта, то при напряжении 220 В мы этого скорее всего не заметим, а при напряжении 12 В напряжение на лампе упадет вдвое до 6 В. Именно поэтому трансформаторы для питания галогенных ламп необходимо максимально приближать к лампам. Например при длине кабеля 4,5 метра сечением 2,5 мм2 и нагрузке 0,1 кВт (две лампы по 50 Вт) момент нагрузки равен 0,45, что соответствует потерям 5% (Таблица 3).

Таблица 3. Момент нагрузки, кВт х м, для медных проводников в двухпроводной линии на напряжение 12 В при заданном сечении проводника

Приведенные таблицы не учитывают увеличения сопротивления проводников от нагрева за счет протекания по ним тока. Поэтому если кабель используется при токах 0,5 и более от максимально допустимого тока кабеля данного сечения, то необходимо вводить поправку. В простейшем случае если Вы рассчитываете получить потери не более 5%, то рассчитывайте сечение исходя из потерь 4%. Также потери могут возрасти при наличии большого количества соединений жил кабелей.

Кабели с алюминиевыми жилами имеют сопротивление в 1,7 раза большее по сравнению с кабелями с медными жилами, соответственно и потери в них в 1,7 раза больше.

Вторым ограничивающим фактором при больших длинах кабеля является превышение допустимого значения сопротивления цепи фаза – ноль. Для защиты кабелей от перегрузок и коротких замыканий, как правило, используют автоматические выключатели с комбинированным расцепителем. Такие выключатели имеют тепловой и электромагнитный расцепители.

Электромагнитный расцепитель обеспечивает мгновенное (десятые и даже сотые доли секунды) отключение аварийного участка сети при коротком замыкании. Например автоматический выключатель, имеющий обозначение С25, имеет тепловой расцепитель на 25 А и электромагнитный на 250А. Автоматические выключатели группы «С» имеют кратность отключающего тока электромагнитного расцепителя к тепловому от 5 до 10. Но при расчете линии на ток короткого замыкания берется максимальное значение.

В общее сопротивление цепи фаза – ноль включаются: сопротивление понижающего трансформатора трансформаторной подстанции, сопротивление кабеля от подстанции до вводного распределительного устройства (ВРУ) здания, сопротивление кабеля, проложенного от ВРУ к распределительному устройству (РУ) и сопротивление кабеля собственно групповой линии, сечение которого необходимо определить.

Если линия имеет большое количество соединений жил кабеля, например групповая линия из большого количества светильников, соединенных шлейфом, то сопротивление контактных соединений также подлежит учету. При очень точных расчетах учитывают сопротивление дуги в месте замыкания.

Полное сопротивление цепи фаза-ноль для четырехжильных кабелей приведены в таблице 4. В таблице учтены сопротивления как фазного, так и нулевого проводника. Значения сопротивлений приведены при температуре жил кабелей 65 градусов. Таблица справедлива и для двухпроводных линий.

Таблица 4. Полное сопротивление цепи фаза — ноль для 4-жильных кабелей, Ом/км при температуре жил 65 о С

В городских трансформаторных подстанциях, как правило, установлены трансформаторы мощностью от 630 кВА и более, имеющие выходное сопротивление Rтп менее 0,1 Ома. В сельских районах могут быть использованы трансформаторы на 160 – 250 кВА, имеющие выходное сопротивление порядка 0,15 Ом, и даже трансформаторы на 40 – 100 кВА, имеющие выходное сопротивление 0,65 – 0,25 Ом.

Кабели питающей сети от городских трансформаторных подстанций к ВРУ домов, как правило используют с алюминиевыми жилами с сечением фазных жил не менее 70 – 120 мм2. При длине этих линий менее 200 метров сопротивление цепи фаза – ноль питающего кабеля (Rпк) можно принять равным 0,3 Ом. Для более точного расчета необходимо знать длину и сечение кабеля, либо измерить это сопротивление. Один из приборов для таких измерений (прибор Вектор) показан на рис. 2.

Рис. 2. Прибор для измерения сопротивления цепи фаза-ноль «Вектор»

Сопротивление линии должно быть таким, чтобы при коротком замыкании ток в цепи гарантированно превысил ток срабатывания электромагнитного расцепителя. Соответственно, для автоматического выключателя С25 ток короткого замыкания в линии должен превысить величину 1,15х10х25=287 А, здесь 1,15 – коэффициент запаса.

Следовательно, сопротивление цепи фаза – ноль для автоматического выключателя С25 должно быть не более 220В/287А=0,76 Ом. Соответственно для автоматического выключателя С16 сопротивление цепи не должно превышать 220В/1,15х160А=1,19 Ом и для автомата С10 – не более 220В/1,15х100=1,91 Ом.

Таким образом, для городского многоквартирного дома, принимая Rтп=0,1 Ом; Rпк=0,3 Ом при использовании в розеточной сети кабеля с медными жилами с сечением 2,5 мм2, защищенного автоматическим выключателем С16, сопротивление кабеля Rгр (фазного и нулевого проводников) не должно превышать Rгр=1,19 Ом – Rтп – Rпк = 1,19 – 0,1 – 0,3 = 0,79 Ом. По таблице 4 находим его длину – 0,79/17,46 = 0,045 км, или 45 метров. Для большинства квартир этой длины бывает достаточно.

При использовании автоматического выключателя С25 для защиты кабеля сечением 2,5 мм2 сопротивление цепи должно быть менее величины 0,76 – 0,4 = 0,36 Ом, что соответствует максимальной длине кабеля 0,36/17,46 = 0,02 км, или 20 метров.

При использовании автоматического выключателя С10 для защиты групповой линии освещения, выполненной кабелем с медными жилами сечением 1,5 мм2 получаем максимально допустимое сопротивление кабеля 1,91 – 0,4 = 1,51 Ом, что соответствует максимальной длине кабеля 1,51/29,1 = 0,052 км, или 52 метра. Если такую линию защищать автоматическим выключателем С16, то максимальная длина линии составит 0,79/29,1 = 0,027 км, или 27 метров.

Как определить сечение кабеля. Расчет сечения медного кабеля

Не всегда верный ответ на вопрос выбора сечения кабеля по току дают менеджеры фирм электротоваров, при котором не учитывают ряд факторов.

Расчет сечения кабеля для монтажа электропроводки

Например, при нагреве кабеля (во время длительного прохождении номинального тока), и в присутствии других кабелей, силовой кабель может нагреться на десятки градусов.

Эти обстоятельства существенно ухудшат сопротивление изоляции. В таком случае кабель должен иметь запас по току до 30% процентов. Так же выбор сечения зависит от того, где уложен кабель, идет он по воздуху, или в кабельном канале, штробе.

Возможные потери кабеля и провода

Учитывая повышенную температуру летом, значение максимального тока нужно умножить на 0,65 тех показаний, которые значатся в таблице №.2 и №3. Так же, в правилах устройства электроустановок имеется снижающий коэффициент для числа кабелей уложенных в лотках, и коэффициент, зависящий от окружающей температуры.

Длина кабеля и провода также несет некоторые потери электричества. Чем длиннее кабель, тем выше сопротивление и соответственно выше потери.

Потери в кабеле нельзя иметь более 5%. Такие потери электричества можно посчитать, зная номинальный ток и сопротивление кабеля.

Расчет потери кабеля

Еще проще посчитать потери по таблице №1.

Момент нагрузки медного кабеля выбранного сечением 1,5 при длине 18 метров и нагрузке 2 квт будет иметь 18 x 2 = 3 6 или 2 %. Когда потери больше 5% нужно брать электрокабель большего сечения.

В случае трёхфазной электросети, момент нагрузки нужно умножить на 3, при симметричных нагрузках (или одинаковых), момент нагрузки умножается на 2, — это на идеальных симметричных нагрузках (когда токи по фазам будут одинаковые, а ток на жиле N будет равен нулю) что можно добиться только на активных нагрузках.

Момент нагрузки, кВт* м, для медных проводников в двухпроводной линии на напряжение 220 В при сечении проводника S, равном:

Таблица 2 выбора сечения кабеля для открытой проводки электрической сети

Сечение жилы кабеля, мм²Диаметр жилы кабеля, ммПроводка с медной жилойПроводка с алюминиевой жилой
Ток, АМощность, кВт при напряжении сети 220 ВМощность, кВт при напряжении сети 380 ВТок, АМощность, кВт при напряжении сети 220 ВМощность, кВт при напряжении сети 380 В
0,50,8112,4
0,750,98153,3
1,01,12173,76,4
1,51,38235,08,7
2,01,59265,79,8214,67,9
2,51,78306,611,0245,29,1
4,02,26419,015,0327,012,0
6,02,765011,019,0398,514,0
10,03,578017,030,06013,022,0
16,04,5110022,038,07516,028,0
25,05,6414030,053,010023,039,0

Таблица 3 выбора сечения кабеля для скрытой проводки электрической сети
(в кабель-канале, трубе)

Таким образом, для трехфазной сети также при потерях, нужно увеличить сечение кабеля, для кабелей при рабочих токах равных 0,5 относительно максимальных, нужна поправка, учитывающая уже не 5% потерь, а 4% потери электричества.

При расчете потери кабеля и провода, нужно учитывать еще и количество соединений, так как они тоже дают немалые потери.

Как выбрать сечение кабеля при монтаже электропроводки?

Выбор сечения провода в этом случае зависит от допустимой плотности тока дельта, которая измеряется в А/мм². Такая плотность тока показывает нагрузку провода, и зависит от условий эксплуатации, которые могут меняться от 2 А/мм² — для закрытой электропроводки и вплоть до 5 А/мм² случае если провода идут в несгораемой изоляции. Порно би, порно , порно кастинги. Нужный диаметра провода можно определить по выбранному току и его значения плотности по следующей формуле:

В случае электрический проводки берется плотность тока дельта (Δ) равной 2 А/мм², и тогда выше приведенная формула преобразуется в:

Сечение провода можно найти по такой формуле:

Такое значение плотности тока 2 А/мм² выбирается с большим запасом потому что, электрическая проводка замуровывается в стену, и достать сгоревшую электропроводку из под штукатурки и финишной отделки стен, весьма непросто.

Сечение кабеля и провода для закрытой электропроводки, берется на 30% больше чем для открытой электропроводки, так как в скрытом варианте кабель практически не охлаждается.

Расчет линий электропередачи для освещения, формулы

Каждый светотехнический проект предполагает массу базовых расчётов. Первый, и самый главный из них – осветительный. Ведь согласитесь, без света не смогут работать ни сами проектанты, ни строители с электромонтёрами.

При планировании линий освещения нужно отталкиваться от прогнозированного потребления (от создаваемой осветительными приборами нагрузкой). Отталкиваясь от этих параметров, производится выбор сечения силовых кабелей и проводов, номинального тока защитно-коммутационного аппарата и т.п.

Поскольку по пути к потребителю материал проводников создаёт сопротивление электротоку — из-за этого происходят потери напряжения. Особенно это заметно когда к одной линии(того же освещения, например) подключено много потребителей, со множеством распределительных и групповых сетей.

В итоге получается, что напряжение на входе и на выходе каждого отдельного участка заметно отличается, и наиболее удалённые по линии потребители получают намного более заниженные параметры напряжения, чем заявлено. И при этом распределение происходит не равномерно, что отрицательно сказывается на работе всех задействованных электроприборов.

Всё потому, что проводники, продолжительное время работающие под нагрузкой, гораздо превышающей расчётную, начинают функционировать в режиме постоянных перегрузок. Вследствие чего возникает перегрев, а это может спровоцировать замыкание или пожар на линии. И всё из-за недочётов проектантов, которые не удосужились подобрать под номинальные токи автоматического выключателя соответствующее сечение проводников.

Поэтому при разработке проекта всегда нужно помнить, что номинальный ток никогда не должен превышать предельно допустимых значений токов проводников. Иначе защитная функция автоматического выключателя, оберегающего проводники от перегрузок, будет просто неактивной.

В отечественных сетях процент потерь очень высокий – иногда он достигает до 10-22 % (в то время, когда в мировой практике эти цифры гораздо ниже, и составляют 4-6%). И в результате перерасход, создаваемый при потере, бременем ложится на плечи конечных потребителей.

Вы спросите, а зачем нужны все эти расчёты, особенно для объектов с невысокими уровнями потребления? Укажем основные причины, почему необходимо делать предварительный расчет мощности (напряжения) для будущей линии освещения:
Во-первых – на основании полученной суммарной мощности потребления определяются оптимальные токи с допустимой нагрузкой на все освещения элементы в цепи.
Во-вторых –исходя из степени нагрева проводников под воздействием рассчитанных, предельно допустимых токов, выбирается оптимальное сечение силовых кабелей и проводов для освещения.

В-третьих – отталкиваясь от полученного значения сечения силовых кабелей (проводов) и от выдерживаемой ими длительной максимальной нагрузки выполняется подбор подходящей защитной аппаратуры автоматического отключения.
В-четвёртых — любые расчёты просто необходимы для получения разрешений и техусловий от местных электрораспределительных организаций. На их основании техкомиссией будет приниматься решение о подключении объекта к линии, соответствующей по мощности и с допустимой нагрузкой.

Несмотря на кажущуюся незначительность (либо недостаточную точность) подобных усреднённых расчётов, они — это необходимое условие дальнейшей безопасной эксплуатации линии, т.к. изначально будут подобраны оптимальные элементы. В результате такие линии будут максимально равномерно распределять токи между всеми потребителями. Попутно будут уменьшаться потери напряжения от нерационально распределенной нагрузки.

Стоит отметить, что в линиях с равномерно распределенной нагрузкой (тех же уличных светильниках, например) потери будут гораздо меньшими, чем в линиях, распределённых не равномерно. В данном случае, вкупе с дополнительной индуктивной нагрузкой, потери могут оказаться вдвое большими. Поэтому приведённый расчет может дать погрешность.

Первым делом при проектировании необходимо выяснить, какой нагрузкой на сети будет обладать будущий объект. Для этого сначала необходимо выполнить расчет суммарной мощности всех осветительных приборов, которые будут запитываться на конкретном участке линии. Имея эти данные можно определить расчётные нагрузки (Рн) освещения питающей сети, а также вводов в жилые (либо производственные) постройки.

Перед этим нужно определить мощности всех ламп в сети. Расчет производится по следующей формуле:

В данном расчёте Мс. – это мощность ламп, Вт, а Кл. – количество ламп, шт.

Полученный по предыдущей формуле результат в дальнейшем используется для определения нагрузок запитывающей осветительной линии.

Расчет выполняется по формуле:

где, Мл. – это установленная расчётная мощность всех ламп;
Кспр. – коэффициент спроса, отображающий, как часто используется осветительное электрооборудование. Он служит в качестве поправки, обязательно вносимой в расчёты, т.к. на практике маловероятно, что все электроприборы будут включены одновременно и на полную мощность.
Данный коэффициент можно определять эмпирическим путём — для каждого отдельного объекта, или принимать подходящее значение из таблицы, приведённой ниже:

Оптимальный вариант принимать значение Кспр. за 0,95.
Кп. – коэффициент потерь в пускорегулирующей аппаратуре ламп. (Для ртутных газоразрядных ламп он составляет 1,1, для люминесцентных – 1,2)

В случаях, когда от будущих линий планируется осуществлять смешанную запитку объекта – и для освещения, и для силовых нагрузок (тех же розеток, например) – тогда оба вида нагрузок нужно суммировать.
Расчетдля смешанных нагрузок выглядит так:

где, Нобщ. – расчётная общая нагрузка, в кВт;
Но – расчётная нагрузка осветительных линий, в кВт;
Нс – нагрузка силовая, расчётная в кВт.

Чтобы определить предельно допустимые сечения проводов, которые будут использоваться в линиях, нужно рассчитать, какие токи будут по ним проходить.
Так для однофазных линий, состоящих из двух проводов,расчет производится по формуле:

Для двухфазных линий, состоящих из трёх проводов (двух фаз и нуля)решение будет выглядеть так:

В случае прокладки трёхфазных линий, состоящих из четырёх проводов (трёх фаз и нуля) сечение определяется путём такого расчёта:

Как уже упоминалось, в любых линиях потерь не избежать– это распространённое и можно сказать нормальное явление. Мало того, то они происходят при транспортировке энергии от поставщика до нужного участка, так ещё и на точках её распределения между несколькими потребителями они нарастают.
Наша задача заключается в том, чтобы подобрать оптимальное сечение проводов, чтобы как можно больше снизить процент потерь распределенной энергии — до нормируемых ПУЭ интервалов: от 2,5 до 5 %. Также желательно сделать так, чтобы нагрузки на сети распределялись равномерно.

Базовый расчет потерь производится так:

Значение активного сопротивления (r0) можно рассчитать по формуле (она справедлива для алюминиевого или стального провода):

При планировании линий, протяжённостью в несколько километров, обязательно должно учитываться индуктивное сопротивление проводов (ИСП),непосредственно влияющее на потери напряжения в сетях. Так как при настолько больших дистанциях, энергия просто не может распределяться равномерно и без потерь.
По опыту работ — можно брать ИСП(в нашем расчёте помеченное как x0)алюминиевых (либо медных) проводов, сечением более чем 95 мм2, в размере 0,32 Ом на 1 километр. Это значение будет корректным в том случае, когда расстояние между проводами относительно небольшое (до 6,0 см). Для проводов сечением 10-25 мм2 используется коэффициент индуктивного сопротивления, равный 0,44 Ом/км. В этом случае допускается более внушительное расстояние между проводами – 10,0 см.

Как показывает практика, в низковольтных линиях, используемых преимущественно для освещения, достаточно сложно добиться равномерно распределенной нагрузки. Поэтому в данном случае лучше использовать четыре жилы проводов (т.е. монтировать трёхфазную линию). И тогда, перераспределяя нагрузки от освещения на фазные и нулевые провода, и силовые — на линейные, удаётся более равномерно разделить нагрузки между всеми фазами.

Для трёхфазных линий расчет потерь, происходящих в каждом проводе, будет выполняться по представленному ниже алгоритму, в котором первый блок — характеризует активные потери напряжения, а второй блок – реактивные.

Давайте для примера просчитаем линию освещения для гипотетического объекта. Заданные параметры приведены на схеме.

В нашем случае установлены однотипные светильники (N=12 шт.), мощностью 400 Вт, через одинаковые интервалы (Инт.=6м).
Рассчитаем расстояние (Р) до центра приложения нагрузок для каждой сети^

Р = Р1 + (( Инт.*(N – 1)/2),

где Р1 – это расстояние от щитка до первой лампочки в сети.

Подставляем значения для проведения расчётов:
Р1 = 15,7 + (6 + ((12-1)/2) = 48,7 метров
Р2 = 21,4 + (6 + ((12-1)/2) = 54,4 метров
Р3 = 23,5 + (6 + ((12-1)/2) = 56,5 метров
Р4 = 27,3 + (6 + ((12-1)/2) = 60,3 метров

Определим расчётные нагрузки, описанные во втором разделе (формулы 1 и 2):

Поскольку группы электроприборов у нас однотипные, значение будет одинаковым для всех линий:

Рн = (12шт*0,4 кВт) *1,1*1 = 5, 28 кВт

И тогда мощность питающей сети составит: 5,28*0,95*4 = 20,1 кВт

Теперь можно определить моменты нагрузки(МН) для каждой сети, рассчитываются они так :

где Рн – расчётные нагрузки, Р – расстояние.

МН1 = 5,28*48,7=257,1 кВт/м
МН2 = 5,28*54,4=287,2 кВт/м
МН3 = 5,28*56,5=298,3 кВт/м
МН4 = 5,28*60,3=318,4 кВт/м

Момент нагрузок для питающей сети (расстояние до щитка I=25 м):

МНс = 20,1 * 25 = 502,5 кВт/м

Итого сборный (или приведённый) момент нагрузки (МНс) по всем линиям равен:

МНс = 502,5+257,1+287,2+298,3+318,4 = 1663,5 кВт/м.

Определим теперь,какие будут потери напряжения для наших линий:

где, Нп — номинальное напряжение, создаваемое при холостой работе трансформатора(принимаем на 105%).
Нмд — минимально допустимое напряжение самых удаленных по сети лампочек(берём 95%);
ПНс — потери напряжения суммарные — до рассматриваемой сети, %(принимаем 3,56% и 3,64%).

Итак Пн = 105 – 95-(3,56-3,64) = 2,8 %

Рассчитаем, наконец, сечение подходящего для наших линий провода:

Сп = 1663,5 / (44*2,8) =13,5 мм2

Находим, какие токи будут проходить по нашим сетям:

I = (20,1*103)/ (3*220*0,6) = 50,76 А

Определяем процент потерь напряжения для каждой сети:

П1 = 257,1 /(3*44) = 1,95%
П2 = 287,2 /(3*44) = 2,17%
П3 = 298,3 /(3*44) = 2,26%
П4 = 318,4 /(3*44) = 2,41%

Как видим, прогнозируемый процент потери во всех случаях вписывается в нормы (до 5%).
На основании полученных данных можно подобрать наиболее подходящие по сечению и токам провода, пуско-регулирующее оборудование, корректировать мощности ламп и т.п. Для облегчения расчётного процесса придумано много полезных приложений, учитывающих все описанные величины. Они позволят не пересчитывать каждый раз всё вручную при замене какой-либо составляющей светотехнического проекта.

При создании проекта линий под осветительные сети нужно добиваться, чтобы напряжения нагрузки по ним распределялись максимально равномерно. Тогда проводники будут меньше нагреваться, снизится процент потерь и убытков, уменьшится риск возникновения аварий.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector
Для любых предложений по сайту: [email protected]