Как посчитать нагрузку на фундамент?
Расчет нагрузки на фундамент — калькулятор веса дома.
Расчет нагрузки на фундамент от будущего дома наряду с определением свойств грунта на участке застройки — это две первоочередные задачи, которые нужно выполнить при проектировании любого фундамента.
О приблизительной оценке характеристик несущих грунтов своими силами говорилось в статье «Определяем свойства грунтов на участке застройки» . А здесь представлен калькулятор, с помощью которого можно определить общий вес строящегося дома. Полученный результат используется для расчёта параметров выбранного типа фундамента. Описание структуры и работы калькулятора приводится непосредственно под ним.
Работа с калькулятором
Шаг 1: Отмечаем имеющуюся у нас форму коробки дома. Есть два варианта: либо коробка дома имеет форму простого прямоугольника (квадрата), либо любую другую форму сложного многоугольника (в доме больше четырёх углов, имеются выступы, эркеры и т.п.).
При выборе первого варианта необходимо задать длину (А-В) и ширину (1-2) дома, при этом нужные для дальнейшего расчёта значения периметра наружных стен и площади дома в плане высчитываются автоматически.
При выборе же второго варианта периметр и площадь необходимо рассчитать самостоятельно (на бумажке), т.к варианты формы коробки дома очень разнообразны и у всех свои. Полученные цифры заносятся в калькулятор. Обращайте внимание на единицы измерения. Расчеты ведутся в метрах, в квадратных метрах и килограммах.
Шаг 2: Указываем параметры цоколя дома. Простыми словами, цоколь — это нижняя часть стен дома, возвышающаяся над уровнем грунта. Он может исполняться в нескольких вариантах:
- цоколь является верхней частью ленточного фундамента выступающей над уровнем грунта.
- цоколь является отдельной частью дома материал которой отличается и от материала фундамента и от материала стен, например, фундамент из монолитного бетона, стены из бруса, а цоколь из кирпича.
- цоколь выполняется из того же материала, что и наружные стены, но так как он часто облицовывается другими материалами нежели стены и не имеет внутренней отделки, поэтому мы считаем его отдельно.
В любом случае высоту цоколя отмеряйте от уровня грунта до уровня, на который ложится цокольное перекрытие.
Шаг 3: Указываем параметры наружных стен дома. Высота их отмеряется от верха цоколя до крыши либо до основания фронтона, так как отмечено на рисунке.
Суммарную площадь фронтонов также как и площадь оконных и дверных проёмов в наружных стенах необходимо рассчитать исходя из проекта самостоятельно и внести полученные значения в калькулятор.
В расчёт заложены среднестатистические цифры удельного веса оконных конструкций с двухкамерным стеклопакетом (35 кг/м²) и дверей (15 кг/м²).
Шаг 4: Указываем параметры перегородок в доме. В калькуляторе несущие и не несущие перегородки считаются отдельно. Сделано это специально, так как в большинстве случаев несущие перегородки более массивные (они воспринимают нагрузку от перекрытий или крыши). А не несущие перегородки являются просто ограждающими конструкциями и могут возводиться, к примеру, просто из гипсокартона.
Шаг 5: Указываем параметры крыши. В-первую очередь выбираем её форму и уже исходя из неё задаём нужные размеры. Для типовых крыш площади скатов и углы их наклона рассчитываются автоматически. Если же Ваша крыша имеет сложную конфигурацию, то площадь её скатов и угол их наклона, необходимые для дальнейших расчётов, придётся определять опять же самостоятельно на бумажке.
Вес кровельного покрытия в калькуляторе рассчитывается с учётом веса стропильной системы, принятого равным 25 кг/м².
Далее для определения снеговой нагрузки необходимо по прилагаемой карте выбрать номер подходящего района.
Расчёт в калькуляторе производится на основании формулы (10.1) из СП 20.13330.2011 (Актуализированная версия СНиП 2.01.07-85*):
где 1,4 — коэффициент надёжности по снеговой нагрузке принятый по пункту (10.12);
0,7 — понижающий коэффициент зависящий от средней температуры в январе для данного региона. Данный коэффициент принимается равным единице при средней январской температуре выше -5º С. Но так как практически на всей территории нашей страны средние январские температуры ниже этой отметки (видно на карте 5 приложения Ж данного СНиПа), то в калькуляторе изменение коэффициента 0,7 на 1 не предусмотрено.
ce и ct — коэффициент, учитывающий снос снега и термический коэффициент. Их значения приняты равными единице для облегчения расчётов.
Sg — вес снегового покрова на 1 м² горизонтальной проекции крыши, определяется исходя из выбранного нами снегового района по карте;
μ — коэффициент, значение которого зависит от угла наклона скатов крыши. При угле более 60º μ =0 (т.е. снеговая нагрузка вообще не учитывается). При угле менее 30º μ =1. При промежуточных значениях угла наклона скатов необходимо производить интерполяцию. В калькуляторе это делается на основании простой формулы:
μ = 2 — α/30 , где α — угол наклона скатов в градусах
Шаг 6: Указываем параметры перекрытий. Помимо веса самих конструкций в расчёт заложена эксплуатационная нагрузка равная 195 кг/м² для цокольного и межэтажных перекрытий и 90 кг/м² для чердачного перекрытия.
Внеся все исходные данные, нажмите кнопку «РАССЧИТАТЬ!». При каждом изменении какого-либо исходного значения для обновления результатов также нажимайте данную кнопку.
Обратите внимание! Ветровая нагрузка при сборе нагрузок на фундамент в малоэтажном строительстве не учитывается. Можно посмотреть пункт (10.14) СНиП 2.01.07-85* «Нагрузки и воздействия».
Как самостоятельно рассчитать нагрузку на фундамент?
Целью расчета является выбор типа фундамента и его размеров. Задачи, решаемые для этого, заключаются в: оценке нагрузок от конструкции будущего сооружения, действующие на единицу площади грунта; сравнении полученных результатов с несущими способностями пласта на глубине заложения.
- Регион (климатические условия, сейсмоопасность).
- Сведения о типе почвы, уровне подземных вод на площадке застройки (предпочтительно такую информацию получить по результатам геологических изысканий, но при предварительной оценке можно воспользоваться данными по соседним участкам).
- Предполагаемая планировка будущего здания, количество этажей, тип кровли.
- Какие стройматериалы будут использованы для сооружения.
Окончательный расчет фундамента может быть выполнен только после проектирования и желательно, если это сделает специализированная организация. Однако предварительную оценку возможно провести самостоятельно с целью определения подходящего места, количества требуемых материалов и объёма работ. Это позволит повысить долговечность (не допустить деформаций основания и конструкций здания) и уменьшить расходы. Достаточно просто и удобно задача решается с применением онлайн-калькуляторов, получивших распространение в последнее время.
- Статические.
- Динамические.
К первым относят общий вес самого строения. Он складывается из массы стен, основы, кровли, перекрытий, утеплителя, окон и дверей, мебели, бытовой техники, канализации, отопления, водопровода, отделки, жильцов. Второй вид носит временный характер. Это выпавший снег, сильный ветер, сейсмические воздействия.
Общая последовательность расчета
- Определение веса здания, ветровых и снеговых давлений.
- Оценка несущей способности почвы.
- Вычисление массы основания.
- Сравнение суммарной нагрузки от массы сооружения и его фундамента, воздействия снега и ветра с расчетным сопротивлением земли.
- Корректировка размеров (при необходимости).
Массу строения рассчитывают по его площади (Sd). Для вычислений используется средний удельный вес кровли, стен и перекрытий в зависимости от применяемых материалов из справочных таблиц.
Удельный вес 1 м2 стен:
Бревно ø14-18см | 100 |
Керамзитобетон толщиной 35 см | 500 |
Полнотелый кирпич шириной 250 мм | 500 |
То же 510 мм | 1000 |
Опилкобетон толщиной 350 мм | 400 |
Деревянный каркас 150 мм с утеплителем | 50 |
Пустотелый кирпич шириной 380 мм | 600 |
То же 510 мм | 750 |
Удельный вес 1 м2 перекрытий:
Плиты железобетонные пустотные | 350 |
Цокольное по деревянным балкам с утеплителем плотностью до 500 кг/м3 | 300 |
То же 200 кг/м3 | 150 |
Чердачное по деревянным балкам с утеплителем плотностью до 500 кг/м3 | 200 |
Железобетонное | 500 |
Удельный вес 1 м2 кровли:
Листовая сталь | 30 |
Шифер | 50 |
Черепица | 80 |
Массу здания вычисляют как сумму сомножителей площади сооружения на удельные веса кровли, стен и перекрытий. К полученному весу постройки необходимо добавить полезные нагрузки (мебель, люди), которые ориентировочно рекомендуют принимать для жилых помещений из расчета 100 кг массы на 1 м2.
2. Ветровая нагрузка на фундамент.
Находится по формуле:
W=W∙k, где W=24-120 кг/м2 — нормативное значение давления ветра (по таблицам в зависимости от региона России).
При определении величины коэффициента k учитывают тип местности:
- А — ровные участки.
- Б — имеются препятствия 10 м высотой.
- С — районы городской застройки высотой >25 м.
Коэффициент изменения давления по высоте (k)
Высота дома, м | А | Б | С |
до 5 | 0,75 | 0,5 | 0,4 |
10 | 1,0 | 0,65 | 0,4 |
20 | 1,25 | 0,85 | 0,5 |
Для высотных зданий (башни, мачты) расчет выполняют с учетом пульсаций ветра.
3. Снеговое давление на фундамент.
Определяется как произведение площади кровли на коэффициент её уклона и на вес одного квадратного метра снежного покрова, величина которого зависит от региона.
Нормативная нагрузка от снегового покрова для России, кг/м2:
Юг | 50 |
Север | 190 |
Средняя полоса | 100 |
Коэффициент влияния наклона крыши:
0-20° | 1,0 |
20-30° | 0,8 |
30-40° | 0,6 |
40-50° | 0,4 |
50-60° | 0,2 |
Чтобы определить, какая нагрузка приходится на фундамент, надо просуммировать статические и временные воздействия и умножить полученный результат на коэффициент запаса (1,5). Подобные расчеты легко выполняются с помощью калькуляторов, содержащих базы необходимых данных.
4. Несущая способность грунта.
При разработке проекта обязательной процедурой является проведение геологических изысканий в месте строительства. По итогам этих работ определяют тип почвы, а по ней и несущую способность пласта на глубине заложения основания. Последняя зависит ещё от уровней промерзания (df) и залегания грунтовых вод (dw).
Заглубление в землю подошвы:
При расчете предполагается, что нагрузки между сваями распределяются равномерно. Вычисляют вес всех опор: Мсф = Sc∙L∙n∙ρ, где Sc — площадь поперечного сечения одной сваи, L — высота столба (длина сваи), n — количество, ρ — плотность материала.
Определяют сумму всех нагрузок на почву: Рфс=Мд+Мсф+Рвн+Рсн, где Мд — вес дома, Мсф — масса всех опор, Рвн и Рсн — ветровые и снеговые давления. Вычисляют напряжение на грунт и сравнивают с его несущей способностью: Рфс/( Sс∙ n )
Расчет нагрузки на фундамент
Расчет нагрузки на фундамент необходим для правильного выбора его геометрических размеров и площади подошвы фундамента. В конечном итоге, от правильного расчета фундамента зависит прочность и долговечность всего здания. Расчет сводится к определению нагрузки на квадратный метр грунта и сравнению его с допустимыми значениями.
Для расчета необходимо знать:
- Регион, в котором строится здание;
- Тип почвы и глубину залегания грунтовых вод;
- Материал, из которого будут выполнены конструктивные элементы здания;
- Планировку здания, этажность, тип кровли.
Исходя из требуемых данных, расчет фундамента или его окончательная проверка производится после проектирования строения.
Попробуем рассчитать нагрузку на фундамент для одноэтажного дома, выполненного из полнотелого кирпича сплошной кладки, с толщиной стен 40 см. Габариты дома – 10х8 метров. Перекрытие подвального помещения – железобетонные плиты, перекрытие 1 этажа – деревянное по стальным балкам. Крыша двускатная, покрытая металлочерепицей, с уклоном 25 градусов. Регион – Подмосковье, тип грунта – влажные суглинки с коэффициентом пористости 0,5. Фундамент выполняется из мелкозернистого бетона, толщина стенки фундамента для расчета равна толщине стены.
Определение глубины заложения фундамента
Глубина заложения зависит от глубины промерзания и типа грунта. В таблице приведены справочные величины глубины промерзания грунта в различных регионах.
Таблица 1 – Справочные данные о глубине промерзания грунта
Глубина заложения фундамента в общем случае должна быть больше глубины промерзания, но есть исключения, обусловленные типом грунта, они указаны в таблице 2.
Таблица 2 – Зависимость глубины заложения фундамента от типа грунта
Глубина заложения фундамента необходима для последующего расчета нагрузки на почву и определения его размеров.
Определяем глубину промерзания грунта по таблице 1. Для Москвы она составляет 140 см. По таблице 2 находим тип почвы – суглинки. Глубина заложения должна быть не менее расчетной глубины промерзания. Исходя из этого глубина заложения фундамента для дома выбирается 1,4 метра.
Расчет нагрузки кровли
Нагрузка кровли распределяется между теми сторонами фундамента, на которые через стены опирается стропильная система. Для обычной двускатной крыши это обычно две противоположные стороны фундамента, для четырехскатной – все четыре стороны. Распределенная нагрузка кровли определяется по площади проекции крыши, отнесенной к площади нагруженных сторон фундамента, и умноженной на удельный вес материала.
Таблица 3 – Удельный вес разных видов кровли
- Определяем площадь проекции кровли. Габариты дома – 10х8 метров, площадь проекции двускатной крыши равна площади дома: 10·8=80 м 2 .
- Длина фундамента равна сумме двух длинных его сторон, так как двускатная крыша опирается на две длинные противоположные стороны. Поэтому длину нагруженного фундамента определяем как 10·2=20 м.
- Площадь нагруженного кровлей фундамента толщиной 0,4 м: 20·0,4=8 м 2 .
- Тип покрытия – металлочерепица, угол уклона – 25 градусов, значит расчетная нагрузка по таблице 3 равна 30 кг/м 2 .
- Нагрузка кровли на фундамент равна 80/8·30 = 300 кг/м 2 .
Расчет снеговой нагрузки
Снеговая нагрузка передается на фундамент через кровлю и стены, поэтому нагружены оказываются те же стороны фундамента, что и при расчете крыши. Вычисляется площадь снежного покрова, равная площади крыши. Полученное значение делят на площадь нагруженных сторон фундамента и умножают на удельную снеговую нагрузку, определенную по карте.
- Длина ската для крыши с уклоном в 25 градусов равна (8/2)/cos25° = 4,4 м.
- Площадь крыши равна длине конька умноженной на длину ската (4,4·10)·2=88 м 2 .
- Снеговая нагрузка для Подмосковья по карте равна 126 кг/м 2 . Умножаем ее на площадь крыши и делим на площадь нагруженной части фундамента 88·126/8=1386 кг/м 2 .
Расчет нагрузки перекрытий
Перекрытия, как и крыша, опираются обычно на две противоположные стороны фундамента, поэтому расчет ведется с учетом площади этих сторон. Площадь перекрытий равна площади здания. Для расчета нагрузки перекрытий нужно учитывать количество этажей и перекрытие подвала, то есть пол первого этажа.
Площадь каждого перекрытия умножают на удельный вес материала из таблицы 4 и делят на площадь нагруженной части фундамента.
Таблица 4 – Удельный вес перекрытий
- Площадь перекрытий равна площади дома – 80 м 2 . В доме два перекрытия: одно из железобетона и одно – деревянное по стальным балкам.
- Умножаем площадь железобетонного перекрытия на удельный вес из таблицы 4: 80·500=40000 кг.
- Умножаем площадь деревянного перекрытия на удельный вес из таблицы 4: 80·200=16000 кг.
- Суммируем их и находим нагрузку на 1 м 2 нагружаемой части фундамента: (40000+16000)/8=7000 кг/м 2 .
Расчет нагрузки стен
Нагрузка стен определяется как объем стен, умноженный на удельный вес из таблицы 5, полученный результат делят на длину всех сторон фундамента, умноженную на его толщину.
Таблица 5 – Удельный вес материалов стен
- Площадь стен равна высоте здания, умноженной на периметр дома: 3·(10·2+8·2)=108 м 2 .
- Объем стен – это площадь, умноженная на толщину, он равен 108·0,4=43,2 м 3 .
- Находим вес стен, умножив объем на удельный вес материала из таблицы 5: 43,2·1800=77760 кг.
- Площадь всех сторон фундамента равна периметру, умноженному на толщину: (10·2+8·2)·0,4=14,4 м 2 .
- Удельная нагрузка стен на фундамент равна 77760/14,4=5400 кг.
Предварительный расчет нагрузки фундамента на грунт
Нагрузку фундамента на грунт расчитывают как произведение объема фундамента на удельную плотность материала, из которого он выполнен, разделенное на 1 м 2 площади его основания. Объем можно найти как произведение глубины заложения на толщину фундамента. Толщину фундамента принимают при предварительном расчете равной толщине стен.
Таблица 6 – Удельная плотность материалов фундамента
- Площадь фундамента – 14,4 м 2 , глубина заложения – 1,4 м. Объем фундамента равен 14,4·1,4=20,2 м 3 .
- Масса фундамента из мелкозернистого бетона равна: 20,2·1800=36360 кг.
- Нагрузка на грунт: 36360/14,4=2525 кг/м 2 .
Расчет общей нагрузки на 1 м 2 грунта
Результаты предыдущих расчетов суммируются, при этом вычисляется максимальная нагрузка на фундамент, которая будет больше для тех его сторон, на которые опирается крыша.
Условное расчетное сопротивление грунта R определяют по таблицам СНиП 2.02.01—83 «Основания зданий и сооружений».
- Суммируем вес крыши, снеговую нагрузку, вес перекрытий и стен, а также фундамента на грунт: 300+1386+7000+5400+2525=16 611 кг/м 2 =17 т/м 2 .
- Определяем условное расчетное сопротивление грунта по таблицам СНиП 2.02.01—83. Для влажных суглинков с коэффициентом пористости 0,5 R составляет 2,5 кг/см 2 , или 25 т/м 2 .
Из расчета видно, что нагрузка на грунт находится в пределах допустимой.
Расчёт нагрузки на фундамент
Неприятно наблюдать, как в недавно построенном доме появляются на стенах трещины. Самое печальное в этой ситуации, что исправить практически ничего изменить нельзя, а если и можно что-то сделать, то это весьма проблематично.
- Как выполняется расчет
- Расчет нагрузки для ленточного фундамента
- Расчет нагрузки для столбчатого фундамента
- Расчет нагрузки для свайного фундамента
- Анализ грунта
- Определение несущей способности грунта
- Наши услуги
А ведь всего этого можно было избежать, если бы изначально расчету нагрузки на фундамент было уделено достаточно внимания.Ознакомьтесь с материалом о том зачем это делается, а также как грамотно и верно выполнять расчёт нагрузки на фундамент.
Как выполняется расчет
Что включается в такой расчет, и что нужно учитывать? Рассмотрим некоторые параметры.
- У различных видов грунта отличная друг от друга несущая способность, поэтому нельзя опираться на тот факт, что у друга дом на мелкозаглубленном ленточном фундаменте стоит уже несколько лет, и ничего.
- Учитывая вес строительных материалов, проводится вычисление массы строения.
- Какая снеговая нагрузка на кровлю в регионе. Тип, и форма крыши играют огромную роль в таком подсчете.
- Ветровая нагрузка. Любой дом, особенно высокий, испытывает ощутимые нагрузки в ветреную погоду, а если ветер постоянно дует в одну и ту же сторону, то фундамент будет подвержен дополнительной нагрузке. Особенно это ощутимо в легких домах, с не очень прочным фундаментом.
- Вес мебели, сантехники и отделочных материалов.
Полученные данные и собранная информация служит для учета несущей характеристики, размера и опорной площади возводимого фундамента. Пренебрежение этими требованиями приводит к ситуациям, описанным в начале статьи.
Расчет нагрузки для ленточного фундамента
При расчете нагрузки на ленточный фундамент, нужно определить количество заливаемого бетона, для чего нужно узнать общую площадь с учетом установленной опалубки. Полученную цифру (в м 3 ) нужно умножить на массу 1 м 3 , которая колеблется в пределах 2000–2500 кг. При расчете фундамента лучше перестраховаться, поэтому за основу возьмем 2500 кг.
Потребуется узнать полную массу дома, снеговую нагрузку на крышу и давление ветра. Эти 4 показателя слаживаются и делятся на площадь основания. Выглядит это так:
(масса фундамента + масса дома + снеговая + ветровая нагрузка) / площадь основания = искомая цифра.
Поскольку расчет получается приблизительным, нужно иметь запас прочности около 25%.
Расчет нагрузки для столбчатого фундамента
Для того чтобы определить нагрузку на столбчатый фундамент, придется умножить площадь сечения столба на его высоту, в результате чего станет известен объем одной опоры. Полученные данные умножаются на цифру, обозначающей плотность материала, из которого сделаны столбы (q). Таким образом произведен расчет нагрузки для одного столба, а чтобы узнать расчетную нагрузку всего фундамента, результат перемножим на количество опор.
Если при расчете получилось, что фундамент не соответствует требованиям, то можно увеличить сечение столбов или увеличить число опор, сократив между ними расстояние.
Расчет нагрузки для свайного фундамента
Расчет нагрузки на свайный фундамент выполняется таким образом:
- Полная масса будущего здания умножается на коэффициент запаса надежности.
- Опорная площадь 1 квадратного сечения сваи определяется путем перемножения размеров двух сторон. При использовании круглых свай опорная площадь одной из них вычисляется по формуле: R2×3,14. Затем полученные данные умножаются на количество используемых свай, задействованных в фундаменте.
- Теперь необходимо узнать нагрузку на 1 см 2 грунта, для чего масса здания делится на опорную площадь фундамента, и удостовериться, что нормативная допустимая нагрузка на грунт в норме.
Одной из особенностей свайного фундамента является правильный выбор сечения и длины свай, для чего нужно знать особенности грунта. Например, в некоторых районах, свая длиной в 3 м может не дойти до твердого основания, и приобретать опоры нужно только после предварительной геологической разведки.
В случае необходимости грунт можно уплотнить путем вбивания дополнительных, не предусмотренных проектом свай, но это приведет к дополнительным, незапланированным затратам.
Анализ грунта
Проектируя фундамент, можно самостоятельно выполнить геодезический анализ грунта, узнав:
- Тип почвы.
- Уровень расположения грунтовых вод.
Также необходимо узнать уровень промерзания грунта, в чем могут помочь карты с такими данными.
Рис. Уровень промерзания грунта в России
Используя ручной бур, по периметру площадки и в центре делается несколько скважин, глубиной до 2,5 м, в результате чего можно увидеть, какой тип почвы, а на следующий день можно увидеть, появилась ли в ней вода, и какой ее уровень.
Рис. Слои почвы в Московской области
Что касается типа почвы, то разобраться в этом непростом вопросе поможет дополнительная информация:
- Если при извлечении бура почва рассыпается – это песчаный грунт.
- Из извлеченного грунта можно скатать цилиндр, но при этом он весь покрывается трещинами – это супеси.
- Получается скатать цилиндр, но при попытке согнуть он ломается – это легкий суглинок.
- Скатанный цилиндр на изгибе покрывается многочисленными трещинами – это тяжелый суглинок, в составе которого много глины.
- Цилиндр скатывается легко, на изгибе не ломается и не трескается – перед нами глинистый грунт.
Используя полученные данные, можно определить какой тип фундамента лучше всего сделать на этом участке и нужно ли делать для него дренажную систему.
Определение несущей способности грунта
Ниже приведена таблица, с помощью которой можно разобраться с несущей способность грунта. Зная, какой тип грунта вы извлекли при пробном бурении, не составит его найти в таблице, и получить больше информации.
Тип почвы | Несущая способность |
---|---|
Супесь | От 2 до 3 кгс/см 2 |
Щебенистая почва с пылевато -песчаным заполнителем | 6 кгс/см 2 |
Плотная глина | От 4 до 3 кгс/см 2 |
Щебенистая почва с заполнителем из глины | От 4 до 4.5 кгс/см 2 |
Среднеплотная глина | От 3 до 5 кгс/см 2 |
Гравийная почва с песчаным заполнителем | 5 кгс/см 2 |
Влагонасыщенная глина | От 1 до 2 кгс/см 2 |
Гравийная почва с заполнителем из глины | От 3.6 до 6 кгс/см 2 |
Пластичная глина | От 2 до 3 кгс/см 2 |
Крупный песок | Среднеплотный — 5, высокоплотный — 6 кгс/см 2 |
Суглинок | От 1.9 до 3 кгс/см 2 |
Средний песок | Среднеплотный — 4, высокоплотный — 5 кгс/см 2 |
Песок, супеси, глина, суглинок, зола | От 1.5 до 1.9 кгс/см 2 |
Мелкий песок | Среднеплотный — 3, высокоплотный — кгс/см 2 |
Сухая пылеватая почва | Среднеплотная — 2.5, высокоплотная — 3 кгс/см 2 |
Водонасыщенный песок | Среднеплотный — 2, высокоплотный — 3 кгс/см 2 |
Влажная пылеватая почва | Среднеплотная — 1.5, высокоплотная 2 кгс/см 2 |
Водонасыщенная пылеватая почва | Среднеплотная — 1, высокоплотная — 1.5 кгс/см 2 |
Таблица 1: Расчетное сопротивление разных видов грунтов
Наши услуги
Компания «Богатырь» предоставляет услуги по погружению железобетонных свай – мы забиваем сваи, выполняем лидерное бурение и привезем непосредственно на строительную площадку сваи, с помощью которых и соорудим свайный фундамент. Если вы заинтересованы в том, чтобы проектировка, гео разведка и монтаж свайного фундамента был выполнен высококвалифицированными специалистами, то отправьте запрос или позвоните нам, воспользовавшись формой и контактными данными, указанными внизу сайта.
Способы расчета нагрузки на фундамент
Исследование свойств грунтов и подготовка основания является важнейшим этапом строительства зданий и сооружений. В процессе проектирования конструкций выполняют расчет нагрузки на фундамент. От правильности и достоверности используемых величин зависит дальнейший ход проектирования строительного объекта.
Алгоритм ведения расчетов
Подсчет усилий выполняют специалисты сертифицированных институтов и строительных лабораторий. Сотрудники специализированных учреждений обладают всеми необходимыми знаниями и высоким уровнем подготовки. Оснащение исследовательских центров высококлассной техникой значительно упрощает процесс подсчета нагрузок.
Определение необходимых величин ведут с высокой точностью. Правильность вычислений влияет на прочность и надежность всех конструкций.
При возведении частных домов выполнение расчетов с высокой точностью не требуется. В этом случае используют упрощенный вариант подсчетов. В качестве технических инструментов применяют специальные компьютерные программы – строительные калькуляторы.
Подсчет усилий от конструктивных элементов ведут с помощью укрупненных показателей. Для корректировки вычислений под конкретные условия строительства применяют поправочные коэффициенты.
Какие воздействия испытывает фундамент и как их определить
В процессе эксплуатации сооружение испытывает следующие усилия:
- Статические (постоянные).
- Динамические (переменные).
Статические усилия оказываются весом элементов. Они не изменяются с течением времени. Подобное воздействие оказывают перекрытия и стены. Статические усилия используются в качестве определяющих при проведении вычислений.
При расчете фундамента используют вес крыши, внутренних и наружных стен дома, плит (балок) перекрытий, лестничных маршей, опорной части.
Динамические усилия являются переменной величиной. Включают в себя влияние людей, мебели и оборудования, атмосферных явлений и осадков.
Внимание! Воздействие ветра для условий малоэтажного строительства не учитывается.
Действие атмосферных осадков в виде снега является самой значительной разновидностью динамических усилий. Воздействие снега учитывают при подсчете усилий на основание.
Зачем нужны вычисления
Расчет нагрузки на фундамент необходим для решения следующих задач:
- выявления положительных и отрицательных качеств условий строительства;
- определение геометрических размеров и площади опирания;
- подбор оптимального количества строительных материалов;
- предотвращение деформаций основания в процессе эксплуатации сооружения;
- обеспечение прочности, надежности и долговечности конструкций;
- рациональное использование людских и технических ресурсов.
Целью подсчетов является определение усилий от здания на 1 м 2 грунтового основания. Полученный результат сравнивают с допустимыми значениями.
Если расчетные данные меньше предельных значений, тогда проектирование объекта переходит в дальнейшую стадию. Превышение полученных значений над предельными цифрами требует принятия альтернативных решений.
Порядок вычисления нагрузки на фундамент
Исходными данными для решения задачи являются:
- район строительства объекта;
- характеристики грунта;
- уровень поверхностных, грунтовых вод;
- материал конструктивных элементов;
- планировка помещений;
- этажность здания;
- тип кровельного покрытия.
Порядок расчета
Определение глубины заложения фундамента. Глубина заложения опорной части сооружения зависит от местоположения объекта, характеристики грунта. Величина принимается по табличным данным. Соответствующие таблицы приведены в нормативных документах.
Определение усилий от кровельного покрытия. Нагрузка от кровли зависит от типа строения и материала элементов. Характер распределения воздействий зависит от формы крыши:
- в односкатных крышах усилия распределяются на одну (нижнюю) сторону;
- в двускатных крышах – на две противоположных стороны фундамента;
- при четырех и более скатах – на все стороны опорной части.
Определение снеговой нагрузки. Воздействие от снега зависит от годовой толщины снежного покрова. Величина определяется по нормативным данным. Площадь снежного покрова принимают равной площади проекции крыши на горизонтальную плоскость.
Подсчет нагрузки от перекрытий. Степень воздействия перекрытий зависит от этажности здания, материала плит (балок) перекрытий. Площадь всех перекрытий принимают равной площади всего строения. Характеристики материала принимают по таблицам.
Расчет нагрузки от стен. Усилия зависят от толщины стен, их положения и материала. Удельный вес материала принимают по таблицам.
Влияние опорной части строения на грунт. Усилие от фундамента зависит от его размеров и материала изготовления. Для предварительного подсчета толщину основания принимают равной толщине стен.
Подсчет суммарной нагрузки на 1 м 2 грунта. Суммарные усилия определяют путем сложения результатов всех предыдущих вычислений.
Сравнение и анализ полученных результатов.
Пример выполнения вычислений с помощью калькулятора
Процесс расчета нагрузки на фундамент полностью автоматизирован. Для выполнения задачи используются компьютерные технологии. Компьютерные программы для расчета зданий называются калькуляторами.
Алгоритм автоматизированного подсчета указан в СНиП 2.01.07-85 от 01.01.1987 г. «Нагрузки и воздействия».
Исходные данные
В качестве примера для расчета фундамента используем следующие исходные данные:
- Здание 2-этажное кирпичное.
- Размеры строения в плане — 6*6 метров.
- Высота этажа – 3 м, высота помещения – 2,7 м.
- Толщина наружных стен – 510 мм.
- Толщина внутренней стены – 250 мм.
- Фундамент ленточный из монолитного железобетона.
- Ширина опоры – 600 мм, высота – 2000 мм.
- Толщина перекрытия из монолитного железобетона – 220 мм.
- Толщина цементно-песчаной стяжки по верху перекрытия – 30 мм.
- Кровля 4-скатная с уклоном 45°. Материал кровельного покрытия – металлочерепица.
- Суммарная длина всех межкомнатных перегородок из гипсокартона – 10 м. Толщина перегородок – 80 мм.
- Нагрузка от кровли – 120 кг/м 2 кровли.
- Снеговой район строительства – ll.
Расчет
Последовательность и результаты расчета ленточного фундамента приведены в таблице.
Объем ленточной опоры
0,6*2*(6*4 +6) = 36 м 3
Масса опорной части (железобетон – 2500 кг/м 3 )
Суммарная длина наружных ограждений
Площадь наружных ограждений в пределах одного этажа
Масса наружных ограждений (удельный вес полнотелого кирпича – 918 кг/м 2 )
(72*2) *918≈133 тонны
Площадь внутренних ограждений
Масса внутренних ограждений (пустотелый кирпич – 450 кг/м 2 )
36*450 кг/м 2 =16,2 тонны
Масса одного перекрытия (железобетон – 625 кг/м 2 )
36*625=22, 5 тонны
Масса всех перекрытий (подвального, межэтажного и чердачного)
Масса перегородок (гипсокартон – 28 кг/м 2 )
27*28 кг/м 2 =756 кг≈0,76 т.
(6*6)/cos45ᵒ= (6*6)/0,7=51,5 м 2
Тяжесть кровли (древесина – 60 кг/м 2 )
51,5 м 2 *60=3090 кг≈3,1 тонны
Масса цементно-песчаной стяжки
36 м 2 *150*3=16200 кг=16,2 тонны
(6*6)/cos45ᵒ= (6*6)/0,7=51,5 м 2
Масса снежного покрова (уплотненный снег – 120 кг/м 2 )
51,5*120=6180 кг=6,18 тонны
Суммарную нагрузку на 1 м 2 грунта сравнивают с допустимой величиной. Искомую цифру принимают равной удельному сопротивлению грунта на сжатие. Указанная величина указывается по нормативным документам.
Результаты расчетов
По результатам расчета фундамента делают вывод о допустимости применения тех или иных материалов. В случае необходимости вносят изменения в размеры и конструкцию элементов сооружения. По измененным величинам проводят повторные вычисления.
Вычислительный процесс осуществляют с особым вниманием ко всем деталям. Используемые характеристики берут из достоверных источников информации, нормативной литературы, технических справочников.
Процедуру принятия решений повторяют несколько раз для исключения ошибок. Каждый результат подлежит многократной разносторонней проверке. Правильность вычислений гарантирует высокое качество, надежность и долговечность конструкций.
Видео по теме: Самостоятельный расчёт необходимой площади фундамента
Расчет нагрузок на фундамент
Нагрузка на фундамент — это суммарная масса всех элементов дома, включая снеговые, ветровые и эксплуатационные нагрузки, которая действует на площадь основания. Расчет нагрузок на фундамент необходимо производить после геологических изысканий участка. Зная тип и особенности грунта, можно соотнести рассчитанную нагрузку с допустимым давлением на конкретный тип грунта.
Для того, чтобы разобраться в методике расчета, рассмотрим пример.
Исходные данные для расчета нагрузки на фундамент
В качестве источника нагрузки на грунт возьмем двухэтажный дом 6 × 8 метров с внутренней силовой стеной.
Конструктивные элементы дома | Площадь элементов |
Площадь кровли | 70 м² |
Площадь чердачного перекрытия | 50 м² |
Общая площадь перекрытия первого и второго этажа | 100 м² |
Площадь внешних стен | 160 м² |
Площадь внутренних силовых стен | 50 м² |
Общий периметр фундамента | 34 м |
В зависимости от конкретной планировки дома, конструкции фундамента и крыши, площади элементов будут различаться. Каждый проект дома необходимо тщательно анализировать и просчитывать элементы. Представленные расчеты носят рекомендательный характер и служат для раскрытия методики анализа.
Для расширения области расчетов рассмотрим два варианта перекрытий – на деревянных лагах и с бетонными пустотными плитами.
Расчет нагрузки на фундамент
Расчет веса каждого элемента производится с учетом параметров строительных материалов, из которых состоят эти элементы:
- 1 м² кровли с асбоцементными листами весит 50 кг. Соответственно, если площадь рассматриваемой крыши 70 м², то ее вес равен 70 × 50 = 3500 кг = 3,5 т.
- Вес 1 м² чердачного перекрытия из дерева 150 кг, соответственно общий вес 50 × 150 = 7500кг = 7,5 т.
- Вес 1 м² бетонного чердачного перекрытия 350 кг, соответственно общий вес 50 × 350 = 17500 кг = 17,5 т.
- Вес 1 м² межэтажного перекрытия из дерева 200 кг, соответственно общий вес 100 × 200 = 20000кг = 20 т.
- Вес 1 м² бетонного межэтажного перекрытия 400 кг, соответственно общий вес 100 × 400 = 40000 кг = 40 т.
- 1 м² внешней стены весит 250 кг. Соответственно, если площадь внешних стен 160 м², то общий вес равен 160 × 250 = 40000 кг = 40 т.
- 1 м² внутренней стены весит 240 кг. Соответственно, если площадь внутренних силовых стен 50 м², то общий вес равен 50 × 240 = 12000 кг = 12 т.
- Примерный вес погонного метра ленточного фундамента 1700 кг. Учитывая, что периметр фундамента 34 м, то его общий вес равен 34 × 1700 = 57800 кг = 57,8 т.
- Вес полезной нагрузки (люди, оборудование, мебель) 26 т.
- Вес снегового покрова 100 кг / м² кровли. Общий вес равен 50 × 100 = 5000 кг = 5 т. При расчете используется не площадь кровли, а площадь ее проекции (то есть площадь чердачного перекрытия). Также, величину снеговой нагрузки необходимо брать в зависимости от региона проживания.
Таблица определения снеговой нагрузки местности
Снеговой район | I | II | III | IV | V | VI | VII | VIII |
Вес снегового покрытия Sg (кгс/м2) | 80 | 120 | 180 | 240 | 320 | 400 | 480 | 560 |
---|
Карта зон снегового покрова территории Российской Федерации:
Подсчитаем общий вес дома:
- Вес дома с деревянными перекрытиями 171 т.
- Вес дома с бетонными перекрытиями 201 т.
Для определения расчетной нагрузки увеличим общий вес на 30% и получим:
- Вес дома с деревянными перекрытиями 220 т.
- Вес дома с бетонными перекрытиями 260 т.
Теперь, зная тип грунта, можно определить и проанализировать площадь подошвы фундамента.
Важно помнить, что тип и глубина заложения фундамента должны определяться после проведения геологических изысканий. Вы должны четко представлять, какой тип грунта имеется на участке, каков уровень грунтовых вод и какова глубина промерзания грунта.
Таблица допустимого давления на грунт, кг/см²:
Грунт | Глубина заложения фундамента, м | |
1 — 1,5 | 2 — 2,5 | |
Щебень, галька с песчаным заполнением | 4,5 | 6,0 |
Дресва, гравийный грунт из горных пород | 4,0 | 5,0 |
Песок гравелистый и крупный | 3,2 | 5,5 |
Глина твердая | 3,0 | 4,2 |
Щебень, галька с глинистым заполнением | 2,8 | 4,2 |
Песок средней крупности | 2,5 | 4,5 |
Песок мелкий маловлажный | 2,0 | 3,5 |
Суглинок | 1,7 | 2,0 |
Глина пластичная | 1,6 | 2,0 |
Супесь | 1,5 | 2,5 |
Песок мелкий очень влажный | 1,5 | 2,5 |
Возьмем для примера песок средней крупности с допустимым давлением на грунт 2,5 кг/см² = 25 т/м².
Получаем:
- 220 т / 25 т/м² = 8,8 м² допустимая площадь подошвы фундамента дома с деревянными перекрытиями.
- 260 т / 25 т/м² = 10,4 м² допустимая площадь подошвы фундамента дома с бетонными перекрытиями.
Площадь подошвы = длина фундаментной ленты × ширину ленты.
Зная периметр (длину) фундамента (в нашем случае 34 метра), можно определить минимально допустимую толщину ленты:
8,8 м² / 34 м = 0,26 м = 26 см (для дома с деревянными перекрытиями).
10,4 м² / 34 м = 0,31 м = 31 см (для дома с бетонными перекрытиями).
Допускается, если толщина ленты будет больше рассчитанных значений. Изменение в меньшую сторону недопустимо.
Спорная методика расчета нагрузки на фундамент
Методики расчета во многих источниках практически одинаковые. Но иногда попадаются некоторые противоречивые особенности. Цитата :
«Нагрузка кровли распределяется между теми сторонами фундамента, на которые через стены опирается стропильная система. Для обычной двускатной крыши это обычно две противоположные стороны фундамента, для четырехскатной – все четыре стороны. Распределенная нагрузка кровли определяется по площади проекции крыши, отнесенной к площади нагруженных сторон фундамента, и умноженной на удельный вес материала.»
По такой же методике, где во внимание берутся только две стороны фундамента, предлагается просчитывать снеговые нагрузки и нагрузки от перекрытий. Но это не совсем верно:
- Кровельная нагрузка (удельный вес материала) используется для определения оптимального шага и сечения стропил, обрешетки.
- Нагрузка может распределятся на те участки стены или мауэрлат, где закреплены стропильные ноги, но далее, благодаря армированному поясу, стенам и фундаменту, она равномерно распределяется по всей подошве фундамента.
Поэтому, при определении нагрузок на фундамент, в том числе ветровых, снеговых и от перекрытий, нужно учитывать всю площадь опирания на грунт.